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I. INTRODUCTION 

A. Purpose of Thermochemistry in General 

The determination of changes in thermodynamic properties such as the 

enthalpy and Gibbs free energy during chemical reactions is of consider­

able interest and utility for physical scientists. When dealing with 

reactions involving crystalline compounds, the practitioners of thermo­

chemistry often ultimately seek accurate heats of formation, which may be 

related to facts and speculations about crystal structures, type and 

extent of chemical bonding, and variability of stoicbiometry. Very com­

prehensive catalogues of thermodynamic measurements of this sort, or of 

the sort from which this information may be derived, exist in compendia 

such as the JANAF tables^ or the volume on thermodynamic properties of 

alloys by Hultgren et alDepending on the degrees of commonness, 

accessibility, and perceived significance of a series of compounds one 

has chosen to study, information useful for comparison to one's results 

may range in quantity from copious to nearly nonexistent. In the latter 

case, of which the two interrelated studies in this dissertation are 

examples, one may choose to make comparisons with properties of analogous 

compounds or with model-based predictions, and may regard the effort as 

only a beginning step toward the compilation of a network of knowledge 

which may facilitate interpretation of subsequent findings. 

B. Format 

Because the methods, data analyses and interpretations of results 

for the tantalum-sulfur and tantalum-aluminum experiments reported herein 
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differ significantly, they will be detailed in separate sections, 

following some additional introductory comments and a description of the 

experimental technique in general. 

C. Methods Used in Thermochemical Measurements 

The Knudsen effusion method, or indeed the measurement of vapor 

pressures over condensed phases by any means, is but one of many ways in 

which thermodynamic behavior of solids can be observed. Other methods 

include: emf measurements, calorimetry involving direct reactions of 

components of a compound, measurement of equilibrium constants of reac­

tions between the condensed phases and an introduced gas, the method of 

distribution coefficients, and Cp determinations by low temperature 

calorimetry. Perhaps only calorimetry rivals vaporization techniques in 

terms of breadth of applicability and the variety of types of information 

obtainable. 

As has been nicely stated by Gilles^ in an introductory level 

article on vaporization studies, the Knudsen effusion method is particu­

larly powerful when coupled to mass spectrometric techniques, through 

which vapor species may be identified and in some instances gas phase 

equilibria may be measured. Among the characteristics common to all 

vaporization studies are (i) the necessity of establishing equilibrium 

between condensed and gaseous phases and (ii) the requirement of some 

method for determination of the partial pressures of one or more species 

which allow the calculation of an equilibrium constant for a known reac­

tion at a given temperature. Each of these considerations can be quite 
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complicated in its full implications for a given experiment, but they do 

comprise the essence of any vaporization study. 
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II. GENERAL DESCRIPTION OF EXPERIMENTS 

A. Implementation of the Knudsen Effusion Technique 

The power and versatility of the combined mass loss-mass 

spectrometric equipment utilized in these measurements have previously 

been demonstrated in a handful of studies, of which a few^'S.G,? are 

particularly relevant because the types of compound and their mode of 

vaporization resemble those in the Ta-Al and Ta-S systems. 

The apparatus is best described in reference 4 and in reference 7, 

the latter augmenting the former with an explanation of the recent addi­

tion of computerized experimental control and data collection. Only the 

essentials are detailed here. 

The polycrystal1ine sample to be vaporized is contained in one or 

more thin semi-toroidal containers made of tungsten, which are in turn 

stacked in the sturdier tungsten Knudsen cell of approximate dimensions: 

diameter = 1.2 cm, height = 2.0 cm. The Knudsen cells employed have 

bevelled, or "knife-edge" orifices such that the channel length to cross 

sectional area ratio is small and thus the Clausing factor (accounting 

for the deviation from equilibrium pressure as shown by Cater^) is effec­

tively unity. The other significant assumption related to crucible 

design is that of negligible top-to-bottom temperature gradients. This 

is important because most effusing particles make their final collision 

with the top wall before escaping via the orifice on the other end, and 

the effective and actual locations of the sample should be at the same 

temperature so that the equilibrium Agg^ple ^wall holds (A 
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being the effusing species). The semi-toroids are placed such that their 

'donut-holes' are approximately coaxial with the orifice in the Knudsen 

cell floor, to allow relatively large volumes of material to be contained 

without blocking the orifice. A tightly fitting lid, also of tungsten, 

sits atop the cell. To ensure that the orifice is the only path for 

effusion from the cell, the contact surfaces of both the crucible top and 

lid are ground to smoothness. 

The sample-bearing cell is encased in a tungsten wire bucket and 

suspended into the core of a (resistive type) tungsten mesh furnace. At 

any constant temperature provided by this furnace, some of the sample is 

vaporized and an equilibrium partial pressure, it is hoped, results. 

Actually, only in the absence of an orifice could a true state of rest be 

obtained even in principle. However, given a sufficiently small orifice, 

the rate at which vapor escapes is slow enough that, barring serious 

kinetic hindrance (to be discussed later) a steady state pressure is 

obtained and chemical equilibrium between the condensed and gaseous 

phases is closely approximated; with the overall composition of the 

system changing negligibly on the time scale required for a measurement. 

The kinetic-molecular theory of gases provides the Knudsen equation, 

relating the rate R-j of mass loss from the cell to the equilibrium 

vapor pressure Pi of species i with molecular weight M^: 

P, (1, 

in which A is the orifice area, T the absolute temperature, and numerical 

constants are combined as C = 3.75 x 10"?. The measurement of the total 
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rate is accomplished by recording the timed output of a Cahn 
i 

electrobalance from which the cell just described is suspended. 

Because this mass loss is recorded as a line on a strip chart and 

~0.5 mg or more of vapor must effuse to allow a reliable slope to be 

determined, it is desirable, and for some chemical systems a must, to 

possess a more sensitive method of determining vapor pressures which can 

make many more measurements in a given time interval and corresponding 

composition range. This sensitivity is provided by quadrupole mass 

spectrometry, to the extent that measurement of the ion current of 

a species i requires less than two minutes even when allowing for signal 

averaging. The UTI quadrupole mass spectrometer employed is positioned 

below the Knudsen CRII and an intervening shutter which is automatically 

controlled by a stepping motor. Schematic diagrams of the apparatus and 

the MINC-11 microcomputer to which it is interfaced are shown in Figures 

1 and 2, respectively. Automation of the temperature measurement and 

control, opening and closing of the shutter, scanning of a mass spectrum, 

measurement of voltages output by the microbalance and their conversion 

to mass values, and the recording of all these observations in floppy 

disk format is accomplished by this computer. A pressure measurement is 

made by scanning a user-specified AMU range before and after opening the 

shutter and finding the difference between the spectra. 

To use the ion currents so obtained in calculating partial pressures 

one must calibrate the mass spectrometer during data collection to deter­

mine its sensitivity to each species whose l| is measured. Regarding 

the temperature-dependent Knudsen equation pressures Pi(T) as the 
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Figure 1. Essential components within the mass loss-mass spectrometer 
vacuum chamber 
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Standard, simultaneously observed 1+ values are related to them in 

the form 

P. = k.lÎT (2) 

in which k-j depends on the instrument's sensitivity to species i but 

not on the condensed phase from which that species vaporizes. Thus, once 

k-j is found as the average of Pi/I^T for a small number of dis­

crete temperatures spanning the experimental range, the more numerous 

It readings at intermediate temperatures are converted to . 

The third major type of measurement required in thermodynamic 

studies (overall composition from the observed total mass loss and par­

tial pressures from the ion currents and/or rate of mass loss are the 

other two) is that of the temperature, which is achieved by positioning 

the junction of a tantalum sheathed W/W-26% Re thermocouple a few milli­

meters from the side of the suspended Knudsen cell. Actual contact with 

the cell, or ideally with the sample itself, would ordinarily be desir­

able, but for the instrumental design employed here this would hinder the 

free movement of the cell and prevent accurate observation by the balance 

of very slow changes in mass. 

Because temperature gradients along the direction normal to the axis 

of the crucible are suspected to exist within the heating zone, calibra­

tion of the thermocouple actually used for experimental measurements is 

done beforehand by comparing its readings over a large temperature range 

to those from a comparable thermocouple junction, positioned within an 
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empty but otherwise duplicate Knudsen cell. Corrections of up to 50°C 

were found to be necessary by this method. 

B. The Phase Rule and Implications 

In the event that the system studied vaporizes incongruently, i.e., 

the vapor and condensed phases differ in composition, the system's 

overall composition varies monotonically with time. The equilibrium 

being measured may thereby change repeatedly as different regions of the 

T-X diagram are entered. It is therefore useful to know beforehand the 

number of condensed phases to be encountered in the T-X regions to be 

measured and at least their approximate compositional ranges of exis­

tence. Armed with this knowledge and the Gibbs phase rule, one can 

predict whether the observed isothermal pressure should change or remain 

constant with time and thus judge the validity of pressure measurements 

at a given known composition. Specifically, for two component systems 

such as Ta-S and Ta-Al, one expects invariant isothermal pressure as 

composition moves through a region where two solid phases coexist in 

equilibrium with the vapor phase (f = G-p+2 = 2-3+2 = 1) and continuously 

varying pressure as an isotherm crosses a one-condensed-phase region (f = 

c-p+2 = 2-2+2 =2). If the locations of phase boundaries are not estab­

lished prior to the vapor pressure measurements, it becomes more impor­

tant to establish what equilibria are being measured by identifying the 

condensed phase(s) present at a series of compositions. This is often 

done by quenching a sample of known composition from high temperature 
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during a vaporization experiment and then removing a portion for X-ray 

powder diffraction. 

The very feature of some systems which makes possible the traversal 

of several phase regions using a single sample, namely incongruent 

vaporization, can lead to kinetic barriers to equilibration and thus to 

ambiguity if the independent phase identification is not performed. It 

is presumed that this barrier occurs when depletion of the more volatile 

component from the outside of granules of the material results in the 

trapping of one phase within a layer of another, or in a concentration 

gradient if only one phase is present. AvoiJance of this nonequilibrium 

situation is attempted by intermittently restoring concentration homo­

geneity through annealing the sample at a relatively low temperature. 

That this annealing usually succeeds in raising the observed vapor pres­

sure with time suggests that there is a narrow range of temperature 

within which the rates of (i) atomic diffusion through the bulk sample 

and (ii) evaporation from the sample surface are compatible. Below that 

range neither rate i$ large enough to change local or overall composition 

at a useful speed, and above that range evaporation depletes the surface 

concentration more quickly than bulk diffusion can restore homogeneity. 

As noted by Shilo et al.s and Shilo and Franzen® the keys to success in 

measuring meaningful, i.e., equilibrium vapor pressures can be (i) the 

discovery of the necessary temperatures and times for annealing and (ii) 

the minimizing of time spent at much higher temperatures. 
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III. TANTALUM-SULFUR SYSTEM 

A. Introduction and Background 

The tantalum sulfur system exhibits a number of intermediate crys­

talline compounds ranging in stoichiometry from TaSg to TagS. Of these 

compounds only TaSg^'^o and TaS2^^ have previously been the subject of 

thermodynamic measurements, while the others, Ta^+xS2, Ta2S and TagS 

were mainly characterized structurally. It is the metal-rich phases Ta2S 

and Tag S which are of interest here because of their unusual stoichiome­

try and refractory behavior at high temperature, both of which are con­

sistent with a substantial amount of intermetallic bonding character. 

The refractory behavior is observable during the synthesis of the com­

pounds, i.e., they do not melt, decompose quickly, or show evidence of 

rapid solid state diffusion when annealed at ^ 1500°C, while the 

bonding character can be seen in the crystal structures determined by 

Smeggil.12 Both structures (Figure 3) possess the same essential fea­

ture, a column consisting mostly of Ta atoms in pentagonal rings stag­

gered relative to one another, with a chain of Ta atoms at its center. 

Two expectations existed regarding the vaporization of Ta2S and Ta^S 

existed prior to performing the experiments: (i) incongruent vaporization 

with S being the more volatile component and (ii) atomization enthalpies 

resembling that of metallic tantalum more than those of the sulfur-rich 

Ta-S phases. Precedents for incongruent vaporization are to be found in 

the related systems Sc-S^^ and Lu-S^^ (although both systems also exhibit 

congruent vaporization at a certain composition), while the high 
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Figure 3. Projection of structures of TagS (top) and Ta^S 
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atomization enthalpies are predictable from other transition metal 

sulfides (see Discussion, this thesis) and the metal-like bulk physical 

properties of Ta2S and TagS. The incongruent nature of the vaporization, 

as verified in preliminary observations during this study, makes these 

compounds ideal candidates for study by ML-MS Knudsen effusion because 

their vapor pressures are measurable by either the combined ML-MS method 

or by mass loss alone. 

B. Experimental Methods 

1. Synthesis and characterization 

Synthesis and identification of crystalline Ta/S phases was accom­

plished by B. U. Harbrecht (Ames Laboratory Postdoctoral Fellow) using 

standard techniques of solid state chemistry, summarized as follows: in 

variable starting ratios near the stoichiometries of desired phases, 

granular tantalum (Alpha Products, 60 mesh, 99.98%) and lump sulfur 

(Alpha Products 99.9999%) were combined in evacuated quartz glass ampules 

and heated to above 850°C for 3-5 days. As previous experience suggested 

the reactions would be incomplete at this stage, the intermediate prod­

ucts usually were not analyzed but were compressed into small pellets and 

then heated in a tungsten crucible by rf induction. The temperature 

range required for homogenization of the sulfides in this manner 

increases with decreasing sulfur content, and for Ta2S was £ 1550°C. 

The maximum temperature was approached gradually to avoid melting or 

rapid change in composition and was maintained for 6 to 10 hours. All 

phase analyses were performed by comparing d (or 20) values from Gui nier 
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powder films to published patterns (see Table 1). The samples actually 

used in the vaporization experiments appeared to contain only TagS. Two-

phase mixtures obtained from Ta/S starting ratios other than 2:1 showed 

that (i) Tag S coexists with Tai.ggSg to the sulfur-rich side or with 

TagS to the tantalum-rich side of 2:1 stoichiometry with no detectable 

change in unit cell dimensions and similarly (ii) Ta^S has the same lat­

tice constants whether in TagS/Ta^S or Ta^S/Ta mixtures. This suggested 

negligible phase width for each compound and thus the scope of the study 

was restricted to measuring vapor pressures in equilibrium with each of 

the mixtures TagS/TagS and TagS/Ta without concern for determination of 

phase boundaries. 

2. Vapor pressure measurements 

Preliminary measurements using both the ML and MS techniques as 

explained in the general introduction revealed two significant limita­

tions. The first was that S and Sg were ttie only vapor species detected 

using the mass spectrometer. This allowed the assumption, employed in 

the data analysis section, that a single vapor pressure measurement would 

suffice in determining both Pg and Pg^ since the two are related by 

an equilibrium constant. The second observation was that, while steady 

rates of mass loss could be monitored with the electrobalance at any 

fixed temperature and a composition corresponding to a mixture of two 

solid phases, the mass spectrometer could not be used to simultaneously 

measure significant or reproducible ion currents at either 32 AMU or 64 

AMU. Specifically, the readings at those AMU settings were not 
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Table 1. Comparison of lattice parameters determined by Guinier powder 
method with those in literature 

Lattice parameters (A) 

Phase Lattice type This study Literature Ref. no. 

Ta bcc 3.307(1) 3.303 15 

TagS monoclinic a = 14.141(2) 

b = 5.286(1) 

c = 14.807(2) 

0 =117.96(1)° 

14.158(4) 

5.284(1) 

14.789(5) 

118.01(2)° 

12 

TagS orthorhombic a = 7.3775(5) 

b = 5.5740(4) 

c = 15.199(3) 

7.381(2) 

5.574(1) 

15.195(3) 

12 

7*1.35:2 hexagonal a = 3.286(4) 

c = 12.651(2) 

3.29 

12.65 16 

significantly greater with the shutter to the mass spectrometer open than 

with it closed, probably because too great a background of S and 5% 

remained in the system from previous experiments. With the sulfur vapor 

thus adjudged "unshutterable", all P vs T data were measured in the form 

of rates of mass loss, monitored on a calibrated variable-speed recording 

chart receiving the output from the balance. Each sample of Ta^S used in 

a series of measurements was of about 400 mg in mass, thus containing ca. 
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32 mg S, and an average of no more than 0.5 mg of mass loss was used to 

determine a single P vs T point. This rather slow method of data collec­

tion, which is due to the limited sensitivity of the Knudsen effusion 

method (already alluded to in the general methods section IIA), resulted 

in no more than 35 measurements in a given two-phase region of a single 

sample. However, attempts to replicate the measurements using Knudsen 

cells with a gradation of orifice size resulted in additional useful 

data. The raw data from the three runs performed are listed in Table 

Al. 

Because incongruent vaporization often results in nonequilibrium 

pressures due to surface depletion of the volatile component, the chosen 

sequence in which pressures were measured alternated between temperatures 

higher and lower in the overall range. This was combined with overnight 

(10 hr or longer) annealings at usually no greater than 1000°C to restore 

sample homogeneity. Reproducibility of pressures measured upon returning 

to a given temperature after such annealings verified the effectiveness 

of this sequence. As will be seen, total elimination of the surface 

depletion effects was not that easily achieved; a small range in observed 

pressure at any single temperature resulted from varying the orifice 

size. This is expected when surface depletion occurs because, relative 

to a given true equilibrium pressure, the deviation in the observed pres­

sure is more serious as the rate of evaporation increases, and rate of 

evaporation at any fixed temperature increases with orifice size. The 

method of accounting for this deviation is explained in the data analysis 

section (IIIC). 
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When the mole fraction of sulfur remaining in a sample approached 

zero (pure tantalum), no gradual decrease in isothermal pressure could be 

observed. Instead, the decrease was rather abrupt, after which no appre­

ciable mass loss occurred even at~1630°C. This suggests negligible 

solubility of S in Ta, which is consistent with the agreement of the 

lattice parameter of Ta in TagS/Ta mixtures with that of pure Ta. 

C. Data Analysis and Results 

1. Derivation of Pg 

Having measured the net rate at which mass in the form of S(g) and 

$2(91) is lost from two different solid-phase mixtures, it is possible to 

write these corresponding chemical reactions: 

- TagSfs) % iTagSfs) + S(g) (3) 
2 2 

TagSls) % 6Ta(s) + S{g) (4) 

and to then determine thermodynamic properties frOin the temperature 

dependence of the equilibrium constant, which is simply Pg in each 

case. Initially, it was asserted that S and S2 are in equilibrium in the 

gas phase; since reactions 3 and 4 could have been written with Sg(g) as 

the vapor species, this assertion actually follows from the assumption of 

condensed phase/vapor phase equilibrium. At the pressures involved, mean 

free paths of vapor species are much too long (~ 1 m at 5 x 10-? atm) for 

S/S2 equilibrium to be achieved through vapor phase collisions and so 



www.manaraa.com

19 

the equilibration mechanism must involve the condensed sample's surface, 

i.e., equilibrated S and S2 evaporate from the solid, or from the inner 

surface of the cell. The equilibrium constant for the reaction Sgfg) ~ 

2S(g) was interpolated from tables in reference 1 and used in determining 

Ps (T) as follows: 

% = 4 / S.vap-

'"s '"Sj 
The rate ( —) which is actually measured, is + 

At At At 

AP (6) 
^ 2TrRT ^2 2ïïRT At 

from the rearranged Knudsen equation (Equation 1). 

Substituting (5) and = 2Ms into (6) yields 

= A ( P ff (7a) 
At 2irRT 

/2P% 
where p  =  p _  + S_ fyhl 

err b % 
p,vap 

Solving 7b, a quadratic equation in Ps, yields: 

"p.vap _ 4/2 '"total 

Ps = 2/2 ^ Kp vap ^ ^ ^ ^ A ^ (G) 

Am^ . 1 
Thus, from each measured (T), Pg^^(T) and Pg(T) were calculated. 

The deviation of Ps(T) (observed) from true equilibrium pressure, 
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dependent on orifice cross sectional area A as noted earlier, ranged 

between factors of about 1.3 and 3. In the absence of any other system­

atic errors, the true Ps(T) should be obtained for A = 0, so the cor­

rection of Ps(T)obs was done by extrapolation to A = 0 in this 

manner: the assumed orifice (and hence, effusion rate) dependence of 

this error was approximated as the truncated form of a series expansion 

of 

with a an unknown coefficient. Substitution of Equation 7a yielded 

in which a' = a(2nRT/Ms)"i/2. Five equally-spaced temperatures span­

ning the experimental range for reaction (3) were chosen; another five 

spanning the range for reaction (4) were also chosen, a' was found at 

each such T by linear least-squares fit of equation (10) to the 

A«Peff(T), Ps(obs) P^irs corresponding to the three orifices 

used. Then a'(T) was parameterized by the five-point least-squares fit 

of a'(T) vs (Linear dependence was observed.) The results 

were: 

reaction (3) : a'(T) = -7.4(1) x 10^ . T'l/z + 1.51(3) xlO* 

reaction (4) : a'(T) = -5.51(6) x 10' • T'l/z + 8.8(1) xlCf 

Pressures were then corrected by applying these values for a'(T) to 

the Ps(f)obs Equation (10); the adjustments can be seen in 

Ps'T'obs = Ps'Tlequ,, ' « ( 9 )  

Pslflobs = Ps'T'equi, - «'A-PefftT) (10) 
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comparing the last two columns of Table Al. The significance of these 

corrections in terms of the resulting enthalpies of reaction is shown in 

the next section. 

2. Calculation of AH°xn by 2nd law and 3rd law methods 

From knowledge of the temperature dependence of the equilibrium 

constant (in this case Ps(T)) one may calculate the enthalpy change for 

the reaction, or in two ways. If one fits a straight line 

to the points { x = 1/T, y = -R In Kp) there results a slope of 

AHfmed an intercept of The T^g^ here signifies the 

median temperature in the experimental range, so chosen because the 

'line' determined by the experimental points has a slight (but usually 

unmeasurable) curvature owing to the dependence of on T and 

the slope of the tangent to this curve at l/T^gj represents an 

average of aHj over the whole temperature range. What is more 

frequently done is a linear least squares fit to (x = 1/T, y = -R In Kp 

- Afef) in which Afef is the change (for a reaction) in the 'free energy 

function', (AGf - AHf^g^)/T. Because of the following relationships 

AG° = -RT In Kp (11) 

-R In K„ - Afef = Ah! /T (12) 
P 'ref 

such a fit results in a zero-intercept line with a slope of 

AHfrgf if the choice of Afef has closely approximated AS*. As 

tabulated in the JANAF tables^, T^gf is 298 K. With or without the 
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use of free energy functions, a linear fit vs 1/T, which is essentially 

an application of the van't Hoff equation, is called a 'second law 

method' despite a common misconception that the form including Afef 

should be termed a 'third law method' because fefs are evaluated using 

the third law of thermodynamics. However, this slope determination 

(equation 12) involves a A(Afef) which cancels the dependence upon the 

third law. 

'Third law method' will here refer to the single point determination 

of AHfpg^ by multiplying Equation 12 by T. In this method the 

correct measurement of absolute values of Kp is required because the 

zero points in ACp and AS® are fixed by the use of the third law-

based fefs. In contrast, the 2nd law method actually depends only on 

relative changes in Kp with 1/T, as the zero-intercept (the distin­

guishing characteristic of 2nd vs 3rd law method) is not required. Used 

without corroboration, the 2nd law method (with fefs) has only goodness-

of-fit and nearness of the resulting intercept to zero as criteria for 

evaluating accuracy. It is somewhat less susceptible to erroneous 

results due to pressure measurements, because AH^gg is not strongly 

sensitive to the correct measurement of Kp in absolute numerical terms, 

but more susceptible to systematic nonconstant errors in temperature 

measurement. On the other hand, the 3rd law method is quite dependent on 

both correctly scaled (not merely internally consistent) Kp determina­

tions and judicious choices of Afef. An intercomparison of AH^gg K 

determined by each method, therefore, provides a test of the combined 
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effects of accuracy in measuring T and Kp and in the choice of Afef for 

the reaction in question. 

The 2nd law results at Tq,gj do not involve any input besides 

measured data and thus represent the temperature dependence of Pg, 

probably subject only to temperature measurement errors (orifice 

dependence of Pg has already been adjusted for): 

TagS/TagS In Pj = -51-7(3) x lO^ ^ 16.0(1) (13) 

TagS/Ta In Pg = "S?'* ^ + 18.3(3) (14) 

Initially, application of the 2nd law (298 K) and 3rd law methods to 

reactions (3) and (4) was attempted by assigning Afefs (according to 

reference 1) as follows: 

3/2Ta2S(s) - l/2Ta6S(s) + S(g) Afef = fef(S(g))-fef(S(s)) 

Ta6S(s) ~ 6Ta(s) + S(g) Afef = fef(S(g))-fef(S(s)). 

This follows from assuming the Neumann-Kopp additivity rule for heat 

capacities holds. 

The results for AH^gg using the Afef assumptions were: 

reaction (3): 104.9(6) kcal by 2nd law vs 99.6(3) kcal by 3rd law, 

reaction (4): 115.9(9) kcal by 2nd law vs 101.1(4) kcal by 3rd law. 

The discrepancies between the reaction enthalpies as determined by 

the two methods were too large to be due to nonequilibrium P$ values; 

the extrapolation described earlier resulted in a correction of~3 kcal 

or less inAHlgg. Another possibility considered was systematic error 
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in temperature measurement, to which 2nd law calculations are much more 

sensitive than are 3rd law calculations. However, no temperature error 

could account for such disparate results for the two reactions; a tem­

perature correction of any size would still leave a large 2nd law-3rd law 

disagreement for at least one of the reactions because although the range 

of temperature measurement was nearly the same for both, AH°xn 298 

adjustments differing by about a factor of three are required. 

The only likely explanation remaining was an inappropriate choice of 

fef values for the compounds Ta2S(s) and TagSCs). Assuming the high-

temperature 2nd law (without Afef) Pg-T relationships as measured 

(Equations 13 and 14) to be basically correct, adjusted fefs were 

derived thusly: expressions for 2nd- and 3rd law T-dependence of AG" 

were written and then equated: 

O O o 

(15) 

O o 

+ TA fef. 
T 

( 1 6 )  

but with Tpg^ = 298 K and AHy 
O 

ref med 
ACp dT 

O 

this became 

AC„ dT + TA fef. (17) 

or Afef = 1 [ ac° dT ] - as' 
T T__f P 'i med 

(18) 
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By assuming ACp to be well-approximated by C" (S(g)) - C" (Ta{s)) 

and performing a graphical integration using tabulated^ values the 

quantity 1.54 kcal was found for the integral term in equation (17). 

When the unknowns fef{Ta in cpd) and fef(S in cpd) were replaced by x and 

y, respectively, the following equations corresponding to reactions (3) 

and (4) resulted: 

Afefg = fef(S(g)) - y (19) 

Afef^ = 6[fef(Ta(s)) -x] + fef(S(g)) -y. (20) 

Substituting the Afef^xp values calculated from equation (18) for 

the appropriate reaction into Equation (19) and Equation (20) at each 

temperature spanning 1400 K to 2000 K in 100 K increments yielded pairs 

of equations. These were solved simultaneously to give the adjusted 

fef's, which are compared with tabulated values in Table 2. 

With these derived fefs the 2nd and 3rd law 6Hf^n,298 calcu­

lations agree (of course). The final adjusted values are listed in the 

last column of Table 3 along with those from the individual experiments 

done with varying orifice area A. Corresponding to the 2nd law quan­

tities are the series of plots in Figures 4 to 7 which depict the In Kp 

vs 1/T behavior for both equilibria, comparing points with orifice 

dependence to the line of extrapolated points. 
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Table 2. Comparison of derived (der) and tabulated (tab) values for 
fefj /R and fefg/R in the solids. Afef/R for reactions 
(3) and (4) employed for the derivation are also listed 

"t -fefja/R -fefja/R -fefg/R -fefj/R ^fefg/R Jfêf^R 
in K (der) (tab) (der) (tab) 

1400 7.02 7.403 5.68 6.723 16.56 18.87 
1500 7.20 7.583 5.87 6.984 16.52 18.83 
1600 7.37 7.754 6.03 7.241 16.49 18.80 
1700 7.53 7.918 6.19 7.494 16.46 18.77 
1800 7.69 8.076 6.35 7.744 16.43 18.75 
1900 7.84 8.225 6.49 7.991 16.41 18.73 
2000 7.99 8.374 6.62 8.235 16.39 18.70 

Table 3. Results of 2nd and 3rd law calculations of AH*vap,298/R 
using derived fef values 

10^ X A 
in nf 

Reaction, 12.5 7.5 1.53 0.00 
Method 

3/2 Ta^S (s) = 1/2 Ta^S (s) + S (g) 

2nd 54.9 (0.3) 55.7 (0.3) 53.9 (0.5) 
3rd 54.5 (0.1) 54.2 (0.1) 53.4 (0.1) 

TagS (s) = 6Ta (s) + S (g) 

2nd 58.2 (0.3) 58.1 (0.5) 58.2 (1.0) 
3rd 59.7 (0.1) 59.4 (0.1) 58.6 (0.3) 

A = area of orifice. 
Numbers in parentheses are std. deviations 

53.0 (0.3) 

58.1 (0.4) 
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3. Enthalpies of formation and atomization 

Because standardized tables of enthalpy measurements are often in 

terms of AH^^298 because comparisons to other chemical systems 

are desirable, AHf^n,298 calculated as just described were in turn 

used to derive other properties: 

AHf,298K (TasS) 7 ̂ "f,298 " ̂ "f,298^^^9)) + 6"^%^ 3,298^ 

( 2 1 )  

*Hf,298K (TasS) ^ ^"f,298 (^(9)) " ^"rxn 4,298 

^"at,298 (TaeS) = ^"rxn 4,298 ®^"f,298 (Ta^G)) (23) 

^'^at,298^^®2^^ ^ •^"f,298^^®2^' * ^^"f,298 + AHf^2gg(S(9))-

(24) 

O 
Using the tabulated values gggfSfg)) = 66.68 kcal/mole^ and 

AH^ 2gg(Ta(g)) = 186.8 kcal/mole^^ these equations yielded (in 

kcal/mol): 
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Phase AH! at,298 

Tag S -48.6(1.0) 1235.1(0.6) 

Ta2S -41.8(0.6) 482.0(0.4) 

To facilitate comparisons both within and outside of the Ta-S 

system, two further adjustments have been made: enthalpies of atomization 

were divided by the number of moles of atoms in a formula unit (e.g., by 

7 for TagS), and all enthalpies were divided by R; the reported results 

are in terms of 10^ K and can be quickly converted to any desired energy 

unit via multiplication by the appropriate R. Enthalpies of 

atomization/mole of atoms are compared to those of related systems in 

Table 4, while intrasystem comparisons of both AH*^ ggg and ah^ ggg are 

seen in Table 5 and Figure 8. 

Assessment of the results reported here will attempt to deal with 

twn concerns: 'how reliable are the numerical quantities?' and 'what is 

their chemical significance?' 

As already mentioned at various points, enthalpies of reaction as 

determined by the Knudsen mass loss method are subject to errors from a 

small number of potentially serious sources: nonequilibrium pressure 

measurements, erroneous temperature determination, and incorrect choice 

of fefs in the data analysis. The deviation of observed vapor pressure 

from that at true equilibrium was probably minimized by the frequent 

D. Discussion 
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Table 4. Enthalpies of atomization/mole atoms, AHat,298/R 
10^ K for Ta2S, Tag S and related compounds 

Solid phase '"k,298/R/(x+y) References 

Pd^S 44.9(5) 18 

RhgS 59(5) 11 

ScS 64,3(7) 19 

TiS 61.0(7) 20 

VS 64.9 21 

TagS 80.9(2) this study 

Tag S 88.9(3) this study 
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Table 5. Enthalpies of formation (f) and atomization (at); 
AH;gg/R/(x+y) in lO^ K 

phase AHf^298/R ^'^at,298'''^ References 
(solid) in 10^ K in 103 k 

S 0 33.6 (0.3) 1 

TaSg -45.3 (2.5) 60.0 (0.7) 9 

-43.3 (5.0) 59.5 (1.3) 10 

TaSg (2nd) 

(3rd) 

^®l+X^2 

X = 0.2 

X = 0.35 

TagS (2nd) 

TagS (2nd) 

-36.7 (3.0) 

-42.6 (2.0) 

-48.8 (3.8) 

-50.5 (4.0) 

-21.0 (0.3) 

-24.5 (0.5) 

6 6 . 0  ( 1 . 0 )  

67.9 (0.7) 

71.5 (1.2) 

73.0 (1.2) 

80.9 (0.2) 

88.9 (0.3) 

11 

estim. 

estim. 

this work 

this work 

Ta 0 94,0 (0,3) 17 
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annealings at low temperature; the extent to which the problem remained 

was accounted for in the extrapolation to A = 0 and seen not to be a 

serious problem. The measurement of temperature was a less tractable 

problem due to the impossibility of contact between the thermocouple and 

the tungsten crucible; the two-thermocouple calibration described in the 

general methods section is the best corrective measure available pres­

ently. However, as previously explained, a serious error in temperature 

measurement could not account for the initially large discrepancy in the 

2nd law/3rd law comparison which is generally the ultimate criterion for 

evaluation of calculated AH^gs» Admittedly, the agreement or dis­

agreement between the results calculated by each method is only the net 

effect of all error sources combined. The approach of determining new 

fef values for the compounds TagSCs) and Ta2S(s) implicitly attributes 

errors in AH^gg to assignment of fefs, consistent with the above 

dismissal of P and T errors. Yet it is still possible that this masks 

the true sources of error and thus the credibility of the new fef values 

becomes the criterion of judgment; an unreasonable value of fef(Ta) and/ 

or fef(S) could suggest undetected systematic problems. 

Referring again to Table 2 one can see that the newly determined fef 

values are in fact quite reasonable. At each temperature, the normalized 

(by R) derived IfefI of Ta is smaller than the tabulated value by about 

0.4 K. This is nearly the same as the entropy difference between the hep 

(low temperature) and bcc (high temperature) forms of metals such as Ti, 

Hf, and Ca. Tantalum exhibits only the bcc form, but perhaps the inter-

metallic bonding and consequent heat capacity contributions in the Ta2S 
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and TagS structures are more similar to those of a hypothetical hep 

arrangement of Ta than to those of bcc Ta. (AHf(Ta(hcp)) = 6 kcal/mol 

according to Brewer). In any event, the discrepancy is not significantly 

large. The somewhat larger difference of (lfef||.g|j{S)-|fef|(jgj.(S))/R " 1 

is apparently the more important difference between the behavior of metal-

rich Ta2S or Tag S and compounds of more conventional stoichiometry for 

which the Neumann-Kopp rule is appropriate. This fef adjustment is at 

least in the right direction, as one would expect S in Tag S or Ta2S to be 

more vibrationally rigid than in S^fs). For assessing the correctness of 

the absolute size of fef^jg^CS), low temperature heat capacity 

measurements on the metal rich tantalum sulfides to directly determine 

fefs would be needed. 

This method of calculating new fefs relies on the accuracy of 
o o 

AH, found by the second law fits. showed good reproducibility 
med med 

from one experiment to the next and small statistical scatter within a 

given experiment, with the combined result of standard deviations of 

kcal or less for both reactions. It can therefore be fairly concluded 

that the enthalpies reported herein are reliable numerically, although 

their estimated accuracy of 0.7 kcal/mol atoms (see p. 67) is worse than 

suggested by the quoted standard deviations, which are indicative only of 

precision in the calculated means or least-squares slopes. 

Discussing the chemical significance of the results is at best semi­

quantitative due to the lack of a well-established model for predicting 

for compounds such as these and to the paucity of thermodynamic 
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measurements on metal-rich compounds in general. The intent of Table 4 

is to suggest the qualitative reasonableness of the AHâtm,298/R 

for Ta2S and TagS by listing them along with the few reduced transition 

metal sulfides for which such data are published; a high temperature 

vaporization studly was involved in each case. That the listings for the 

Ta compounds are the highest is not surprising, because their stoi-

chiometry and known structures obviously mean that many metal-metal bonds 

are broken in an atomization process. The average Ta-Ta distance is 3.03 

A in both Ta2S and TagS are 3.03 A and 3.03 A, respectively (cf 2.69 in 

Ta, 3.38 in TaSg), so one expects bonding enthalpy intermediate between 

that of the pure metal and that of sulfur-rich compounds. 

In Figure 8 is depicted the intra-system variation in AH°at,298 

for Ta/S phases; the value for Tai.ggSg is estimated assuming that it 

is not metastable. A straight line connecting points at Xja = 0.0 

(pure S) and Xja = 1.0 (pure Ta) would signify the atomization 

enthalpy of x mole of Ta(s) and y mole of S(s) such that x + y = 1.0. 

Thus* the length of the vertical segment from a known cnmnounH'? point on 

the curve to the straight line represents AHf,298/R on a mole-of-atoms 

basis. Ta2S and Ta^S can be readily seen to be less stable relative to 

the solid elements than are the less metal-rich sulfides. This illus­

trates that AHf^298 of a compound is a property of both the com­

pound and the standard state elements; TagS and Ta2S are more difficult 

to vaporize than the other Ta-S phases (also apparent from the curve) but 

are composed mostly of Ta which is nearly as refractory. 
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The other facts denoted by this graph are the metastability of Ta2S 

and TagS. Each falls below the concave-downward curve through the phases 

and each is thereby expected to disproportionate; TagS into Ta^.a^Sg + 

Ta and Tag S into Ta2S + Ta (and therefore into Tai.ggSz + Ta). 

Supplementary experiments by B. Harbrecht using I2 as a transport agent 

succeeded in converting TagS into Tai.35S2 and Ta at 1220 K after 2 days, 

but Ta2S could not be converted at 1270 K after 3 days. One can attempt 

to calculate the transition temperature for the disproportionation as 

follows. Using AGJ = 0 = AHy - T^Sj as the criterion for the 

transformation via 2TagS(s) Tai.35S2(s) + 10.65 Ta(s) and approxi­

mating ASy by -12'[fef(Ta)-fef(Ta in TagS)] - 2[fef(S)-fef(S in TagS)] 

or 13.6 cal/K and AHj by AHf^298 (Tai.ss^z) " 2AHy^298 (TagS) 

or - 3.0 kcal yields a negative value for Tt, i.e., the disproportiona­

tion is energetically feasible at all temperatures. However, the large 

uncertainty h8 kcal) in the estimated AH^^298(Taj.35S2) makes 

the test inconclusive. It could either be the case that AG for the 

reaction is <0 for all temperatures and the metastability of Tac S (and 

similarly of Ta2S) at room temperature is due to lack of an easy reaction 

path, or that AH is in fact >0 and TagS exists at equilibrium only below 

Tt £1220 K, above which TAS outweighs AH and the disproportionation 

occurs. Only with more precisely determined values for AHf(Tai .35S2) 

and for ACp for the reaction in question can more quantitative 

conclusions be made. It must suffice at present to say that TagS and 

Ta2S both appear to be nearly unstable with respect to disproportionation 

at room temperature. If the disproportionation has occurred near the 
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experimental temperature range and the equilibrium being measured differs 

from that assumed, the enthalpy derived will still be nearly 

indistinguishable from that of the assumed reaction, since at nearby 

all three solid phases will coexist at one point. 

In addition to the low-temperature heat capacity measurements 

already suggested, a worthwhile future study would be determination of 

ûHf for Ta S to further the knowledge of relative 

stabilities in this system. There was also the indication of a 

structural modification of Ta^S slightly different from that originally 

reported; elucidation of that structure could also prove interesting. 
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IV. TANTALUM-ALUMINUM SYSTEM 

A. Introduction 

Intermetalllc compounds have a shorter and more rapidly developed 

history than do more familiar metal-nonmetal compounds. It was not 

recognized that true intermetallic compounds, with properties (e.g., 

hardness and melting point) significantly different from those of the 

component elements, occurred at certain stoichiometries until the early 

19th century, with S-brass (CuZn) being the protype discovery.2% The 

availability of X-ray powder diffraction methods for phase identifica­

tion, which remains to this day the most frequently used technique, was 

the real catalyst for the accelerated rate of discovery after 1921. The 

measurement of thermodynamic properties of intermetallics has a corre­

spondingly brief legacy, but examples have not proliferated at anything 

like the rate of discovery of the compounds themselves. Since the first 

thermochemical measurements on the CuZn system in 1901,23 so few attempts 

to systematize existing data have been made that it is still a fair 

assessment to say that there is no well-established model of bonding and 

resultant stability of intermetallics. Broad and mostly qualitative 

arguments relating trends in enthalpies of formation to differences in 

size, valence or electronegativity of the components are the common 

features of most attempts to model the existing phenomena. 

It is clear that in most known cases the &H^^298 mole of 

atoms are not large (-8 kcal to -3 kcal), and combined with usually small 

entropy differences between elements and compounds this suggests that 
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intermetallics are often not markedly stable relative to pure metals. 

Exceptions to this, referred to as "superalloys" are rationalized by 

Brewer and Wengerif* in terms of availability of empty d orbital s for 

bonding likened to Lewis acid-base behavior, which may contribute to 

AH^^298 3s large as -80 kcal/mole. 

In general, models like that of Kubaschewski^^ deal with binary 

compounds in which the components may belong to any metallic group. The 

newer model due to Miedema et al.^® whose predictions (as will be seen 

later) still often miss the mark, at least improves on earlier attempts 

in considering separately instances of transition metal-main group inter­

metallics. (Data on such compounds were employed in empirically deriving 

Mi edema*s model.) 

In providing a conceptual and historical background for the Ta-Al 

system which is the subject of this study, it is most relevant to con­

sider t-Al systems (t being a transition metal). Restricting the scope 

to the most similar cases, the following background exists: vapor pres­

sure measurements have been emoloved in arrivina at AH) in the 

systems Mo-AlNb-Al® and Zr-Al? through methods very similar to those 

in this study. With direct reaction calorimetric methods, enthalpies of 

formation for compounds in the systems Ti-Al,^?, V-Al^® and Cr-Al^s have 

also been determined. In each of these six systems the values for 

^H°f,298 per mole of atoms fall in the range -3 kcal to -11 kcal, 

indicating that previously studied aluminides are typical intermetallics 

(as referred to above) with respect to stability. 
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B. Historical Background 

Tantalum-aluminum alloys have their most important occurrence and 

application in the microelectronics industry, where their reliability as 

thin film resistors and the ease of producing them via cosputtering tech­

niques has made them quite popular^". Some physical measurements on 

Ta-Al compounds have focussed on thin film properties relevant to this 

sort of use, e.g., resistivity and Hall effect. However, the only bulk 

phase also occurring as a thin film is TaAl^. 

Measurements of bulk phase properties have included those of 

density,3i hardness,Young's modulus,^^ and electrical and thermal 

conductivity among others. The current study is unprecedented; it is the 

first attempt to determine thermal stabilities of Ta-Al compounds. 

The remaining (and most significant) reports of previous work on the 

Ta-Al system have been attempts to identify and classify the intermediate 

compounds. These results have been a basis for phase identification in 

this work. With varying degrees of completeness the following phases had 

been observed and characterized prior to this study: T3AI3, Ta^Aly, 

Tai7Ali2» and a "o" phase of compositional range Ta2Al to Ta^Al. 

The historical progress leading to this accumulated knowledge can be 

summarized as follows: TaAlg, the existence of which had been predicted 

in 1868 by Marignac^^ was identified by Brauer^® in 1939 and was said to 

be isotypic with TiAlg (space group I,*/mmm) (see Figure 9). In 1960, 

Edshammar and Holmberg^^ prepared the o-phase (sg P42/mnm) at approximate 

composition Ta2Al (near the Al-rich extreme) and noticed the similarity 
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O o 
• 

o o 

Figure 9. The structure of TaAl^ in projection along the c axis. Large 
circles are Ta atoms; smaller are Al; solid: z = 0; empty: z = 
Vj; shaded: z = 
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of Its X-ray powder diffraction pattern to that of o-NiV, thereby assign­

ing the atomic positions depicted in Figure 10. Variable stoichiometry 

is achieved by (disordered) mixed occupancy of the positions labeled A 

and D. They also mention the analogous o-Nb2Al compound observed by 

McKinsey and Faulring one year earlier.3? Nearly simultaneous findings 

by Nowotny et al.^® added to knowledge of this region of the phase 

diagram in claiming that the Al-rich and Ta-rich boundaries of the a-

phase were "-Tai .8^1 and ^Ta^Al, respectively and suggesting that a 

compound of approximate stoichiometry TaAl2 coexisted with the former. 

In still another contemporary study, Wilhelm and Witte^^ state (without 

including numerical evidence) that TaAlg as well as "TagAl" (o-phase) has 

a compositional range. They also examined melting behavior and observed 

that TaAlg and "Ta2Al" both melt peritectically, beginning at tempera­

tures of 1500 ± 50*C and 2100 ± 50°C, respectively. Other solid-liquid 

phase diagram features include the peritectic melting of the solid solu­

tion of Ta in A1 (up to 0.037 at % Ta) observed by Glazov et al."^", an 

eutectic of TaAlo-Al (95.7 at % Al) melting at 615°C according to 

Spengler*!, and another eutectic claimed by Wilhelm and Cowgill^^ to 

occur near 90 at % Ta in the a + Ta(ss) region. 

Gupta**^ also observed the a-phase and reported an unknown phase at 

near 40 at % Al. Schubert'*'* and Raman'*® both identified this unknown 

phase as Tai7Ali2, with a disordered bcc structure of o-Mn type, ao = 

9.88 A, in analogy to Nbi?Ali2. Both also stated that Ta^yAlig is a 

high-temperature phase, Raman claiming that the minimum temperature at 
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Figure 10 Projection along c-axis of "Ta^Al" (sigma phase) structure. 
Approximate z coordinates; empty circles, 0; filled circles, 
1/2; others, 1/4 and 3/4. Ta atoms reside in position types 
B, C, and E; A1 atoms in A and D 
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which it is stable is ^1300*C. Raman's other significant contribution 

was to claim that the compound TaigAli? existed and was indexable as fee, 

ao = 19.315. This was likely the phase "TaAlg" seen earlier by Magneli 

et al.^G and Nowotny et al.^® A more internally-consistent indexing was 

later provided by Girgis and Harnik**^ with a hexagonal cell of a© = 

12.776(5) A and CQ = 27.04(4) A and they labeled the compound Ta2Al3. 

The structure of Ta2Al3 is undetermined to date. A summary of updated 

phase information will follow the sections on synthesis and phase 

relationships at which time a comparison with findings from the current 

study will be made. 

No quantitative phase diagram exists; there is only the fragmentary 

information on the Al(ss) region, the claim by Nowotny that Ta dissolves 

"very little" A1 (according to lattice parameters), and the above-

mentioned melting point behavior, most of which is not useful in the 

present study due to the composition and temperature ranges involved. 

C. Experimental Methods 

1. Synthesis 

A series of single- and two-phase Ta-Al materials of varying overall 

composition was made, both for the purpose of verification of the pre­

viously reported phase relationships and for use in the vaporization 

experiments. The essence of the synthetic technique was a two step proc­

ess. First, powdered Ta (60 mesh, Alfa Ventron) and granular A1 (Alfa 

Ventron, 99.98% m or Baker, no quoted purity) were pressed into small 

pellets using 12000 Ib/sq. in. hydraulic pressure on a 1/2 in. diam. 
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stainless steel die. These pellets, which were far from homogeneous at 

this stage because of the difficulty of mixing particles of such differ­

ent sizes, were then arc melted under a continuously flowing dry Ar 

atmosphere for three minutes or longer, pausing periodically to invert 

the pellet to encourage further mixing. Much of the aluminum originally 

present was often lost in this step because of the much higher vapor 

pressure of A1 relative to Ta. By trial and error the minimum excess of 

A1 required for arriving at a desired composition was found to be rather 

larger for the TaAl^/TagAlg range than for TagAl^/o or a/Ta. Neither 

phase identification nor quantitative analysis was attempted at this 

intermediate point after early efforts showed the mixtures to be inhomo-

geneous. 

In the subsequent step, annealing of the alloys in tungsten 

containers by inductive heating resulted in further (but much slower) 

vaporization of A1 but also in homogenizing of the samples, often first 

indicated by the relative ease with which they could be pulverized after 

cooling to room temperature. Preliminary Knudsen effusion experiments 

provided information useful in choosing optimum annealing temperatures 

for this step: ca. 950 ± 50'C for mixtures more Al-rich than "TagAl" and 

>1100°C for more Ta-rich mixtures. 

2. Phase relationships 

Phase identification was accomplished by X-ray powder diffraction 

using Cu-Ka radiation (x = 1.5406 A) and a Guinier camera. With the 

exception of the high-temperature compound Ta^^Al^g» previously 
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reported phases were observed, with no significant deviation from the 

unit cell dimensions ("lattice parameters") expected. No evidence of 

significant nonstoichiometry of TaATg (as had been suggested by Wilhelm 

and Witte) was obtained. Two phase mixtures of Ta2Al3 with TaAlg or with 

the -phase indicated very similar lattice parameters and thus very small 

phase width for Ta2Al3. Lattice parameter determinations both within and 

to either side of the a-phase showed reasonable agreement with the range 

previously reported. Only in the subsequent Knudsen effusion experiments 

were any efforts made to establish phase boundaries, which efforts were 

less than conclusive for reasons to be described later. Interruptions of 

vaporization experiments on three different samples at various overall 

compositions provided additional qualitative (identification of phases 

present) and quantitative (lattice parameters) data. A summary of all 

lattice parameter data obtained is presented in Table 6 with comparisons 

to literature values. 

In several Gui nier X-ray films, there were unidentifiable lines 

attributed to contaminants. The Ta reagent powder itself gave several 

such lines of diffuse quality but quite strong intensity. These lines 

were not present in Ta powder which had been heated in a vacuum at 1300°C 

for several hours, indicating relatively high volatility of the contami­

nant, nor did they ever appear along with lines due to Ta-Al phases in 

either synthesized samples or residue from interrupted vaporization 

experiments. Other extraneous phases, believed to be due to oxidation or 

contact with container surfaces during preparation, were indicated by 
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Table 5. Lattice parameters of phases in the Ta-Al system 

Phase Crystal system Lattice parameters (A) 

Ta cubic a = 3.303 
3.3104(8) 
3.3106(8) 

3.3006(4) 

3.304(2) 

Ta^Al 
("o" phase) 

tetragonal a = 9.98 
9.875(1) 

9.901(1) 

c = 5.16 
5.210(1) 

5.2019(8) 

Ta^Al 
("a" phase) 

a = 9.825 
9.828 
9.823(4) 

9.824(2) 

c = 5.232 
5.232 
5.234(3) 

5.233(2) 

C
O

 

<
 

C
M

 hexagonal a = 12.776(5) 
12.76(1) 

12.81(1) 

c = 27.04(4) 
27.14(8) 

27.04(3) 

—1
 

>
 

tetragonal a = 3.842 
3.840 
3.839 
3.844(1) 

3.8429(3) 

c = 8.553 
8.537 
8.535 
8.552(1) 

8.546(1) 
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Comments 

Réf. 15 
starting material, 
heated in vacuo, 
1300'C, 3 hr. 
residue, run 7; 
with a phase, 
residue, run 8; 
with a phase. 

Ref. 38 
residue, run 7; 
with Ta. 
residue, run 8; 
with Ta. 

Ref. 38 
Ref. 36 
interrupt run 3; 
with Ta^Alj. 
sample 11a; before 
run 8. 

Ref. 47 
interrupt run 3; 
with Ta2Al 
sample 2av; with 
TaAig. 

Ref. 35 
Ref. 38 
Ref. 45 
sample 2av; with 
T a 2 A l 2 .  

with A1 
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lines that were quite weak in intensity and few in number. None of the 

samples actually used in Knudsen experiments had indications of any 

unknown phases in the form of X-ray diffraction lines, but because of the 

recognized limited sensitivity of X-ray diffraction in qualitative 

analysis, further analyses were performed on both starting materials and 

synthesized compounds using other methods. Tests for metallic impurities 

were performed by Clarence Ness and Robert Conzemius of the Ames 

Laboratory using spark source mass spectrometry. Carbon was analyzed by 

a combustion/chromatographic method by Robert Bachman of Ames Laboratory 

Analytical Services, and dissolved H, 0, and N were detected with vacuum 

fusion analysis by Nile Beymer. Results are summarized in Table 7. The 

most significant metallic impurity was potassium in the Ta reagent 

powder, indicated to be roughly 3-4 at %. This was presumed due to the 

method of industrial preparation of the powder from bulk tantalum, about 

which no claims of purity were made by the manufacturer, Alfa Ventron 

Corp. The greatly reduced value of K concentration in an arc-melted 

sample analyzed in the same manner and the aforementioned disappearance 

of contaminant lines after heating of the Ta powder or synthesis of com­

pounds suggest that the contaminant was an easily removed potassium-

containing species, although comparison with available powder data on 

likely phases did not identify it as such. 

Further examination of Table 7 reveals that the contamination by 

dissolved gases varied during each stage of the thermal history of a 

sample. 
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Table 7. Impurities of phases in Ta-Al system in atomic ppm; dashes entered indicate 
analysis not performed 

Sample, history Greatest metallic impurities Greatest nonmetal Impurities 

K B Na Si H C N 

Tel, starting material 40,000 200 200 100 1000 64 57 2400 800 

Fe Si Ga Ca 

Al, starting material 700 60 43 36 520 1277 120 5900 10 

Fe ^ 
Alloy sample, arc-melted 180 50 17 500 860 1600 <20 

Sample 2av, before run #6 25 - 30 800 

Sample 2av, after run #6 0 32 400 
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Sample 2av, which is representative of all samples actually employed 

in ML-MS runs, contained a tolerable amount of dissolved oxygen which 

decreased further during run #6. This corresponds to the observation 

that the AI2O (M = 70) MS signal always decreased with time, from -1/200 

to "1/5000 the size of Ij?. The degree of oxygen contamination still 

present after arc-melting suggests that the subsequent inductive 

annealing under vacuum is necessary not only for homogenization of the 

samples but purification as well. It is both surprising and reassuring 

that no detectable Cu was present in the arc-melted sample despite 

melting it on a copper surface. 

3. Mass spectrometry and mass loss 

The general methods have already been described. (Please refer to 

section IIA and Figures 1 and 2.) As in the Ta-S system, incongruent 

vaporization occurs, in this instance to Al(g) which was the only sig­

nificant entity detected in the vapor. Mass spectrometry proved useful 

in measuring vapor pressures; reproducible ion current readings Ij 

could be obtained at 27 amu at temperatures as low as -1000*0 through the 

use of signal averaging techniques. The standard technique was to 

perform 5 sweeps, each of 10 seconds duration, across a 0.5 amu range 

centered on the peak of interest. This 0.5 amu range was divided into 10 

channels, at each of which -1064 observations of were made during 

each sweep. The accumulated Ij after all sweeps were completed were 

averaged on a per-channel basis and the entire procedure was done both 

with the shutter open and then closed. The Ijy value used in further 
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calculations was the difference in the two peak centers thus obtained; 

this value was always observed to be a nearly constant fraction of the 

open-closed difference in peak area owing to the constancy of the A1 peak 

shape: a broad, nearly featureless shoulder on the much larger signal at 

~28 amu due to CO and N2. The standard deviation in Ijy» calculated as 

the average scatter in the readings at a given channel, was approximately 

3 X 10-12 giving a signal-to-noise ratio of ~3:1 in the case of the 

weakest signals used. Kematick^^ has stated that the signal-averaging 

method may lower the minimum temperature at which meaningful I27 mea­

surements are obtainable by ~100°C. That this is desirable was learned 

in repeated Ta-Al experimental sequences which suggested reduced kinetic 

hindrance to equilibrium at a range of ~1050°C to 1250°C for ^ 

0.33 ("TagAl") and approximately 100°C higher for X^i ^ 0.20 

("Ta^Al"). The optimum temperature range is apparently the lowest at 

which reproducible P^i measurements are obtainable. 

Calibration of the mass spectrometer with reference to the PAI 

determined by mass loss was based on measurements at as many as 20 

temperature-points in two-phase regions during a given experimental run. 

The constant K = P/Igy'T ranged from 1.35(8) to 2.2(2) in these deter­

minations. A least-squares fit for one such calibration is depicted in 

Figure 11. 
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Figure 11. Least-squares fit to Pa) (in atm) vs MS current-T product 
(in Amp'K) 
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The previously described surface depletion syndrome plagued the 

first few experimental runs quite severely; of the 10 samples vaporized 

in all, only 3 of the last 4 provided data which were ultimately used. 

The criteria for accepting Pai (T) measured in a given two-phase 

region included more than just internal consistency because it was noted 

that higher pressures could be achieved by longer annealings and by per­

forming measurements in optimum temperature ranges, the latter determined 

mainly by trial-and-error. As a result, repetition of pressure measure­

ments in the same compositional range with identical samples in the same 

crucible sometimes differed by as much as a factor of 4. Fortunately, 

there is a basis for making the correct choice among discrepant P/vi 

determinations, in that the highest value obtained at a given (T,X) point 

supersedes all lower values. There is effectively a lower boundary to 

the equilibrium pressure (for incongruently vaporizing systems) based on 

the understanding that the only likely source of systematic error will be 

manifested as an erroneously low pressure. One conceivable exception to 

this is a leakage of effusing vapor at the crucible/lid contact surface, 

which would result in a faulty calibration due to mass/loss not "seen" by 

the mass spectrometer. This was ruled out by a check of each crucible 

for leakage by vaporizing Pb from the cell while surrounded by an evacu­

ated glass enclosure. Effusing Pb which recondensed on the glass 

surfaces gave no indication of significant effusion from other than the 

orifice. Data presented and evaluated hereafter represent the highest 

pressures measured over each T-X range studied. 
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Table 8 summarizes the experiments producing useful P/\] vs T 

data, and/or phase identification. The previously described method of 

verifying which equilibria were being measured by interrupting an experi­

ment for sampling and Guinier powder diffraction showed that the expected 

solid compounds were present in all cases. Based on earlier reports of 

solid regions of the phase diagram and continuous monitoring of the over- ' 

all sample composition using the mass balance, these interruptions were 

performed after anticipated solid-solid phase boundaries were crossed. 

More accurate determination of these boundaries by MS observations of 

isothermal pressure changes was attempted but not accomplished, due to 

the inability to distinguish diffusion-related effects from equilibrium 

effects. 

In run 6, during which the equilibria involving first TaAl^ with 

Ta2Al3 and then TagAl^ with "TagAl" (the Al-rich extreme of the a-phase 

region) were measured, there was no observable variation in P/\i as 

= 0.60 (corresponding to TagAl^) was crossed. As will be demon­

strated in the upcoming data analysis and results section, this has 

implications about the relative stability of Ta^Al^ and neighboring 

phases. It also means that the assumption that TagAl^ is effectively a 

'line compound' at X^i = 0.60, which is indicated by determinations 

of unit cell size, must be employed in the absence of additional evidence 

of phase boundary locations. Similarly, it was not possible to pinpoint 

the boundaries of the single-phase region ("a") occurring from approxi­

mately X/\] = 0.33 to = 0.25, in this case because the varia­

tion in P/\] across this relatively wide phase is small and quite 
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Table 8. Summary of selected mass-loss mass spectrometry runs 
A = 6.0 X 10"' M^ 

Run No. Sample No. Initial, Final X^ifat.) Comments 

2av 0.696 0.593 Identified Ta2Al3/Ta2Al 

mixture in residue 

2av 0.696 0.574 Data on TaAlg/TagAlg 

and Ta2Al3/Ta2Al regions 

4aiv 0.226 0.097 Data on Tai^Al/Ta region, 

superseded by run 8. 

Lattice parameters of 

Ta,^A1 from residue 

llaii 0.406 0.158 Data on TagAl^/TagAl, a, 

and Ta^Al/Ta. Ta(ss) 

region not reached due to 

kinetic hindrance. 



www.manaraa.com

60 

gradual. Again, the assumption of phase boundaries consistent with 

previous reports as corroborated by near agreement of lattice parameters 

was made, i.e., TagAl and Ta^Al are the assumed boundaries. The final 

boundary of interest was the Al-rich limit of the Ta solid solution, 

expected to be very near Xai = 0.0 due to previous claims^® of negli­

gible solubility of A1 in Ta and the similarity of the unit cell dimen­

sion (cf. 3.303 A to 3.304(2) A) of Ta determined from pure Ta and from 

Ta(ss) in equilibrium with Ta^Al, respectively. Kinetic hindrance and 

the resultant drop in occurred well before the Ta(ss) region was 

reached and made this boundary indeterminable also. The assumption of 

this boundary location and its effects on subsequent calculations were 

assessed as reasonable and not contributing to serious uncertainty (see 

Data Analysis and Results). 

Isothermal trends in P^i at T = 1548 K and 1625 K spanning the 

(overall) compositional ranges accessible to equilibrium measurements are 

shown in Figure 12. Measurements of using two orifice areas 

differing by a factor of 2.1 showed no significant systematic difference 

and thus orifice dependence was not further examined. The total tempera­

ture ranges were 1386 K - 1713 K for TaAl3/Ta2Al3 and Ta2Al3/Ta2Al 

measurements, 1321 K - 1628 K for the o region, and 1321 K - 1626 K for 

the Taj»Al/Ta region. 

In all regions the Ij? measurements by mass spectrometry were 

programmed to occur at equally spaced temperature intervals in a cyclic 

fashion, first moving from minimum to maximum and then in the opposite 

direction. In the two phase regions, the temperature interval between 
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Figure 12. Variation in isothermal P/\] (at 1548 K and 1625 K) with 
overall composition in the Ta-Al system 
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successive measurements was no smaller than 10 K, while in the a single 

phase region the measurements were aimed only at providing a small number 

of isotherms and were separated by ~80 K. It was frequently observed 

that IJ7 measurements made during the increasing half of the tempera­

ture cycle were 5 to 10% smaller than those at the same temperatures 

during the decreasing half-cycle. A dwell time of 3 minutes was employed 

at each new temperature before a MS measurement was made, in an effort to 

minimize the temperature direction dependence and allow sufficient 

equilibration at each point. Raw data from the successful Ta-Al experi­

ments are presented in Tables A3 to A6. 

PAI VS T data obtained in two-solid-phase regions during runs 6 

and 8 correspond to equilibria expressed in the following chemical 

reactions: 

D. Data Analysis and Results 

^laAlgfs) ^ —Ta2Al3(s) + Al{g) 
2 , * 1 

(25) 

—Ta2A13 {s) ^ —Ta2A1 (s) + Al (g) 
1 . . . 4. 1 

( 2 6 )  

Ta^Al(s) I 4Ta(s) + Al(g) (27) 

Using Afef = fef (Al(g)) - fef(Al(s)) from reference 1 the 2nd and 

3rd law methods are applied to the above-mentioned data to calculate 

^H°xnj298 for reactions 25 to 27. Figures 13 to 15 show the 2nd law 
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Figure 13. 2nd law (298 K) plot for the reaction 
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Figure 14. 2nd law (298 K) plot for the reaction 

— Ta2Al3(s) ^ — TagAlts) + A1(g) 
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Figure 15. 2nd law (298 K) plot for the reaction 
Ta^Al(s) t 4Ta(s) + Al(g) 
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(298) fits corresponding to these reactions. Only in the case of 

reaction (27) is it possible to immediately proceed with determination of 

AHf,298 any Ta-Al intermetallic compound. The of TagAl, 

required for calculation of AH^j298 of more Al-rich phases, corre­

sponds to a chosen composition at one limit of a broad single phase (a), 

and was determined using a different method. 

By applying the Gibbs-Duhem equation it is possible to find the 

variation in the chemical potential (and therefore, partial pressure) of 

one component of a binary system if the composition dependence of y of 

the other component is known at some fixed temperature. In this system 

Pja is immeasurably small ("-10-^^ atm or lower) but is determined by 

knowledge of Pya at some overall composition through: 

Aln Pya = / ^ ^ d In P^^ . (28) 

The composition is taken as XAI = 0.20 (Tai^Al), the Ta-rich 

boundary of the o phase, at which Pja is equal to its value at the 

Al-rich boundary of the Ta solid solution. Assuming Xjg = 0.99 at 

the SS boundary and Raoult's law behavior for Pfa (linear dependence 

on Xja» which is bolstered by observation of Raoult's law behavior in 

the Nb-Al and Mo-Al systems) Pj^ at Xj or X^^ = 0.20 becomes 0.99*Py^ 

or 1.73 X 10-18 atm at 1625 K: Pj^ = 9.75 x lO-^^ atm at 1548 K. Plots 

of vs In P^^ as measured in run #8 were graphically integrated 

between the limits X^i = 0.20 and X^i = 0.33 to yield: 
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T = 1625 K : = 1.52 x lO'is atm 

T = 1548 K : Py^ = 8.24 x 10-20 

The AH° _ for the atomization reaction 

Ta^AKs) % 2Ta(g) + Al(g) (29) 

for which 

AG* = -RT In (P% • P^,) (30) 

was then found by combining P/\] as measured with Pjg determined 

as just described, again using Afef prescribed as usual according to the 

Neumann-Kopp assumption. AHf^gge Ta^Al is then found from 

^^f,298(^32*1) = "^^rxn 29,298'*" ^ ^^^,298^^^^ ^ * (^l) 

The uncertainty in aH'f^gge Ta^Al contributes to the uncer­

tainty in AH'f^gge all other phases except Ta^Al ; the means of 

estimating this error should be briefly described. The determination of 

subject to errors in Afef, T, P-j-^, and P^^. The 

estimation of ±1 eu in Afef, ±15 K in T, and relative errors of ±0.15 in 

P / \ ]  a n d  P j g  y i e l d e d  a n  e r r o r  e s t i m a t e  o f  ± 2 . 2  k c a l  i n  a H ^ ^  

in a standard propagation-of-errors treatment. Therefore, all phases 

more Al-rich than TagAl should be considered to have AH'^^ggg/fxty) 

d e t e r m i n e d  t o  a n  a c c u r a c y  o f  n o  b e t t e r  t h a n  ± 0 . 7  k c a l .  
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Determination of AHf^298 TaAlg and 182^3 involves com­

bination of AHf,298 from the neighboring phase with AH^xn,298 

for vaporization of the phase in question, as in, e.g.,: 

A H f , 2 9 8  ( T a z A T s )  ^  ^  ̂ " ° f ^  ^ " a t , 2 9 8 ^ ^ ^ ^  "  ̂ " ^ r x n  2 6 , 2 9 8 ^  

(32) 

Tables 9 and 10 list the reaction enthalpies and enthalpies of 

formation, respectively, calculated as explained above. The values of 

AH°pxn 298 and AH?,298 "Ta^A1 " were found by Gibbs-Duhem 

integration as for Ta2Al (with different limits of integration); the 

uncertainty in AHf^298(Ta3Al) and AH?^298(T34AT) were estimated 

in the same manner as that of AH^^298(Ta2Al). 

E. Discussion 

Figure 16 depicts the variation with composition of the normalized 

values forAH^^298 i" the Ta-Al system and visually compares them 

with values for compounds in the similar systems V-Al, Mo-Al, and Nb-Al. 

The similarity in both the trends and average magnitude from one system 

to another is evident. In this context, the otherwise surprisingly small 

AH^,298 of Ta-Al phases may be viewed as quite reasonable. Further 

discussion of these quantities and the underlying reasons for their 

magnitudes will follow in section V. 

It can also be observed that TazAl^ appears to be nearly unstable 

with respect to disproportionation into TaAlg and Ta2Al. This is 
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Table 9. Enthalpies of vaporization reactions at 298 K, Ta-Al system; 
AH'gg/R in 103 K 

Reaction 

-TaAlJs) X -Ta,Al_(s) + Al(g) 
3 3 ^ " 

ilajAlgls) * ila^AKs) + Al(g) 

TajAKs) X 2Ta(g) + Al(g) 

TagAKs) X 3Ta(g) + Al(g) 

Ta,Al(s) > 4Ta(s) + Al(g) 

2nd Law 3rd Law 

44.5(7) 43.4(4) 

43.9(4) 43.2(3) 

232(2) 

326(2) 

46.4(1) 44.8(4) 
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Table 10. Enthalpies of formation* and atomization of Tax^'y and 
related phases; AH°gg/(x+y)/R in 10^ K 

Phase Formation Atomization Atomization, related phases 

TaAlg -2.86 56.1 VAl, 48.5 

NbAlj 55.3 

MOgAlg 55.1 

TagAlg -2.27 63.6 VgAlg 60.1 

TagAl -1.37 77.2 NbgAl 74.0 

Ta^Al -1.12 81.5 Nb^Al 77.3 

M03AI 72.6 

Ta^Al -1.05 84.2 

Ta 0 92.5 V 61.9 

Nb 87.1 

Mo 79.2 

^Uncertainty in AHf,298(*+y)/R estimated (see p.67) to be 

±0.3 X 103 K. 
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Figure 16. Normalized enthalpies of formation for phases in Ta-AI and 
related systems in 10^ K 
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consistent with the previously mentioned lack of any noticeable drop in 

Pft-) across the 2:3 composition. Numerous attempts to quench high 

temperature (as high as 1100°C) mixtures of Ta-Al phases repeatedly 

resulted in the presence of TagAlg along with one of the other two 

phases. It cannot be concluded that Ta2Al3 is a stable phase relative to 

the neighboring phases since it is possible that the disproportionation 

quickly reversed upon cooling or that the transition temperature is 

>1100*C. 

The values listed in Table 10 for ^H|t,298 the various compounds 

result from combinations of AHf,298 ' AHât,298 (AT) and AHât,298 (Ta) 

and should, therefore, be regarded as having the same estimated uncer­

tainty as corresponding AH^J298 values, i.e., about 0.7 kcal per 

mole of atoms. 

Comparison of AHat,298 of Ta-Al phases with phases in related 

t-Al systems has the intent of assessing relative cohesive or bonding 

energies in the various systems. The similarities are evident in both 

Tabic 10 and Figuré 17 although it is noticed that in sach casc 

AH°at/(x+y)/R is largest for TaxAly. Considering the relative sizes 

of AH2t,298(M) and AHat,298^^®' (cf. 123 kcal/mol atoms for V to 

186.8 for Ta) and their comparable magnitudes of AHf^298 (cf. Figure 16) 

this trend moy be related to the proposed idea, to be explored further in 

the next section, that bonding involving 5d or 6d orbital s of transition 

metals is more effective than that involving overlap of 4d orbitals. 

This idea assumes that factors involved in relative strengths of 
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Figure 17. Comparison of normalized enthalpies of atomization in 10^ K 
per mole of atoms for similar M-Al systems 
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transition metal-transition metal bonds are valid concepts when dis­

cussing bonding in transition metal-aluminum ("t-Al") compounds. As 

noted earlier in the discussion of Ta-S results, the most Ta-rich phases 

in the system most resemble Ta itself in cohesive energy because within 

the system these compounds involve the greatest amount of Ta-Ta bonding. 
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V. GENERAL INTERPRETATION 

A. Introduction 

Additional considerations of the significance of bonding enthalpies 

and enthalpies of formation as determined in this thesis were facilitated 

by the use of concepts from the two (arguably) most relevant treatments 

of the stability of intermetallics, the models of Brewer-Engel*^® and 

Miedema et alThe validity of both these approaches in applications 

to the systems of interest is questionable for various reasons, but 

minimally each contains suggestions for starting points in understanding 

the relative magnitudes of AHgt and in intrasystem and 

intersystem comparisons. 

B. Brewer-Engel Model 

The essential feature of the Brewer-Engel ("B-E") treatment,**^ which 

is at best useful only for metallic elements and was not investigated 

here, proposes a correlation between the observed crystal structures 

aiiu iw/ VI HIV 5 V aiid I  i* IVII ciciiiciiod aiiu wic pud uu t a tcu iiuitiucf 

of s and p electrons involved in bonding. The correlation holds nearly 

without exception in that dn-^s, d""^sp, and d"-^ sp^ configurations 

are paired with bcc, hep and fee structures, respectively for series 4 

through 6 of the periodic table. Even in this limited application the 

concept seems somewhat superficial since its valence-bond-like scheme, 

appropriate to gaseous atoms, is quite different from features of the 

band theory of metals. Extension of the B-E correlation to binary 
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intermetallic compounds of A1 has even less basis because of the great 

variety of complex structure types not easily related to bcc, hep and 

fee. 

Brewer also proposes, however, that while the number of s and p 

electrons involved in bonding directly determines structure, the total 

number of unpaired electrons in the valence state, which includes 3d, 4d, 

or 5d electrons as well, is among the determining factors of bond energy. 

On this assumption, he proceeds to apportion the bonding enthalpy of each 

transition metal into the contribution from s,p electrons vs that of d 

electrons. In doing so, a number of assumptions were made, the validity 

of which cannot conclusively be determined. Each of these assumptions 

will be introduced, in order of increasing detail in the model, for 

discussion of the validity of extending B-E concepts to intermetallics. 

The least speculative way of calculating a property indicative of an 

element's capacity for bonding in a given binary system was employed 

first; theAHat,298 fof" each member of a series of compounds was 

related to the number of atoms of each type in its fomula, e.g.: 

TaAlg: A + 3B = 445.6 kcal 

TagAlg : 2A + 3B = 632.3 

Ta2Al: 2A + B = 460.5 

TajAl: 3A + B = 648.0 

Taj»Al: 4A + B = 836.3 

A and B are (respectively) the putative contributions to the bond 

enthalpy from one Ta atom and one A1 atom. A least squares minimization 

led to values of 187 kcal for A and 85.9 kcal for B. The fit of calcu­

lated to observed values of AHat,298 was excellent; the average 
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error per compound being ±0.40 kcal/mole. In comparing these results to 

186.8 kcal/mole for Ta metal, and 78.7 kcal/mole for A1 metal, one ob­

serves that the intermetallic bonding capacity of A1 is increased over its 

intra-element bonding in a more significant way than that of Ta. This is 

an alternative way of stating the previously illustrated fact (Figure 16) 

that the largest AHf,298 (per mole of atoms) in the Ta-Al system 

are those of the most Al-rich compounds (and the smallest, those of the 

Ta-rich). Further speculation about this sort of trend for systems in 

general will be presented in the discussion of the Miedema model. 

The least-squares fit described above was applied to available data 

on other t-Al systems and to t-S systems,5° including Ta-S. The fits 

were typically very internally consistent, with the average deviation per 

compound less than 3 kcal for all but a small minority of systems. The 

results for Ta-S compounds were: 187.1 kcal/mole Ta atoms and 113.2 

kcal/mole S atoms (cf. 66 in elemental S). Again, the main group 

element, S in this case, is stabilized more than is Ta in formation of 

the birisry compounus. 

The results from the entire t-Al and t-S series for AHât/S 

atom and AHgt/Al atom are given in Table 11, while those of the 

transition elements in the same compounds are presented in Table 12. 

The additional features of Brewer's assignment of bonding enthalpy 

per electron, namely its further division into (s,p) and d contributions 

and the inclusion of promotion energy to derive a valence state bonding 

enthalpy are mutually interdependent. Because the addition of a spec-

troscopically determined promotion energy®^ to the observed ah^^298 
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Table 11. Bonding (atomization) enthalpy per atom-mole and per e--mole 
of A1 or S in transition metal aluminides and sulfides (t-x) 
in kcal 

\t 

A 
Se Ti V Cr 

A1 88.9(29.6) 87.5(29.2) 82.3(27.4) 
S 139(59.4) 100(50.0) 68.6(34.3) 

Y Zr Nb Mo 

Al 90.4(30.1) 88.0(29.3) 89.7(29.9) 
S 150(75.0) 83.8(41.9) 101.8(50.9) 83.4(41.7) 

La Hf Ta W 

Al 81.7(27.2) 91.1(30.4) 85.9(28.6) 
S 106(53.0) — 113(56.6) 74.0(37.0) 

cf. values or pure metals: Al 78.7(26.2) 
b 001jj; 
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Mn Fe Co Ni Cu 

81.6(27.2) 
69.0(34.5) 

88.4(29.5) 
83.0(41.5) 

82.2(27.4) 
78.6(39.3) 

95.5(31.8) 
76.6(38.3) 

80.1(26.7) 
72.0(36.0) 

Te Ru Rh Pd Ag 

77.1(38.5) 
103.3(34.4) 
75.5(37.8) 

78.0(26.0) 

Re Os Ir Pt Au 

73.5(36.8) 
— 

78.0(39.0) 
81.2(27.1) 
72.5(36.2) 

90.6(30.2) 
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Table 12. Bonding (atomization) enthalpy per atom-mole and per e~-mole 
for transition elements and their aluminides and sulfides in 
kcal 

\ Element 
\ and 

TypeXno. electrons 
of \ 

Phase \ Sc(3) Ti(4) V(5) Cr(6) 

metal 91(30.3) 113(28.2) 123(24.6) 95(15.8) 
t-Al - 117(29.4) 123(24.6) 97.9(6.3 
t-S 117(29.4) 118(29.5) 183(36.7) 

Y Zr Nb Mo 

metal 102(34) 146(36.5) 172(34.4) 157(26.2) 
t-Al — 154(38.6) 176(35.2) 162(27.0) 
t-S 125(41.8) 244(61.0) 187(37.4) 181(30.2) 

La Hf Ta W 

metal 
t-Al 
t = S 

104(34.7) 146(36.5) 187(37.4) 203(33.8) 
133(44.3) 156(39.1) 187(37.4) 
184(61.3) - 187(37.4) 243(41.5) 
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Mn(7) Fe(6) Co(5) Ni (4) Cu(3) 

68(9.7) 
78.2(11.2) 

117(16.7) 

99(16.5) 
100(16.7) 
106(17.8) 

102(20.4) 
126(25.3) 
113(22.6) 

103(25.8) 
106(26.4) 
113(28.2) 

81.1(27.0) 
88.2(29.4) 
87.6(29.2) 

Te Ru Rh Pd Ag 

158(22.6) 155(25.8) 133(26.6) 

147(29.5) 

91(22.8) 
95.4(23.8) 
92.9(23.2) 

68.4(22.8) 
70.1(23.4) 

Re Os Ir Pt Au 

187(26.7) 188(31.3) 160(32.0) 135(33.8) 87.3(29.1) 
- - - 162(40.6) 93.8(31.3) 
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requires the justification of a greater enthalpy difference between the 

two relevant electronic configurations (e.g., sd^ and spd^) in the solid 

than between the corresponding states in the gaseous atom, one must 

arrive at a self-consistent set of (s,p) and d bond enthalpy contribu­

tions. This was done by Brewer through assuming that the (s,p) contribu­

tion varies smoothly across a transition series and interpolating between 

the values known for Sr and Cd, (e.g.) which involve no d electrons in 

bonding. This rather flat curve was then subtracted from the trend in 

net valence state bonding enthalpy to give the d electron contribution. 

Consideration was given to performing an analogous derivation of the 

bonding enthalpy due to (s,p) vs d electrons of the transition metal 

("t") in t-Al and t-S systems, however, there was not sufficient informa­

tion on such systems involving t-metals at the ends of each transition 

series to estimate the (s,p) contribution. Therefore, the division on 

the basis of assumed total number of electrons without regard for type 

(s,p, or d) is the furthest extension of Brewer's ideas to be attempted. 

The second entry for each transition metal in Table 12 is based on 

the assumption that the total number of electrons involved in either 

elemental, intermetal1ic, or t-S bonding is incremented or decremented by 

one electron per element across the transition series and is independent 

of chemical composition within a given system. This number of electrons 

was assigned to be consistent with Brewer's treatment for purposes of 

comparison. Alternative ways of assigning this number are at least 

equally plausible, e.g., Pauling's metallic valences,5% resulting in 

different normalized bonding enthalpies especially for the last few 
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members of a transition series. As may be seen in the numerical results, 

the trend in bonding enthalpies across the transition series is more 

pronounced in the 'per electron' than the 'per atom' form. No claims are 

made as to the greater significance of the trend as illustrated in the 

'per electron' form; the values are presented for comparison without 

further justification, which would require better understanding of the 

meaning of 'valence' in a solid. Figures 18a and 18b show the results 

for 3d metals in t-Al phases along with Brewer's results for the pure 3d 

metals. The same general trend is evident, and if the s,p trend for the 

bonding in the compounds is similar to that for the pure metals, the 

trends for d electrons are probably quite similar also. The upper curve 

in Figure 18a is the trend for e" which resembles the 

interpolated s,p curve in 18b. 

It is quite reasonable, then, to suggest that the concept of a 

certain bonding enthalpy per electron in a given intermetallic system is 

valid. The slight variation across the transition series of 

AH*«. __./Al atom may again be due to d electron terms in the net 

bond enthalpy. The considerable difference in the bond enthalpies of 

t-Al and t-S compounds for many t metals, and the lack of as smooth a 

trend in the sulfide results as in the aluminide results suggest that (i) 

bond enthalpy per atom is not strictly a property intrinsic to one atom 

type without regard for its environment and (ii) extension of the concept 

to compounds other than intermetallics has less validity than its 

application to intermetallics. 
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in the alumlnides (lower curve, left) as determined in this 
study with that in the pure metals as determined by Brewer 
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It should also be recognized, however, that the labeling of t-Al 

compounds as 'intermetallic' and thus distinct in character from t-S 

compounds is arbitrary and perhaps not useful in explaining the different 

properties of the two groups of compounds. 

There is another trend in the bond enthalpies per atom, noticeable 

in the values derived for the transition metals as well as in those for 

A1 and S. As a given group is descended the contribution rises markedly, 

a phenomenon commonly attributed to greater spatial extent of the d 

orbital s of the transition metal in rows 5 and 6 than in row 4. This 

would mean a corresponding improvement in both t-t and t-Al (or t-S) 

bonding capability, a factor which Brewer claims is compensated for by 

condensation of 3d elements into intermetallic structures having abnor­

mally dense packing and thus shorter-than-average bond distances. A 

comparison of known structure types of t-Al and t-S compounds of row 4 

transition metals with those of rows 5 and 6 provided no clear evidence 

that either coordination numbers or bond distances were consistently 

different from row to row, however. 

Further examination of Table 12 reinforces the notion that there is 

little gain in bonding strength for most of the transition metals (most 

notably Ta) in forming compounds with A1 or S as compared to intra-

element bonding. Most exceptions to this generalization are sulfides, 

which in almost all cases have larger AHât,298 per t atom for t-S 

than for t-Al or pure t metals. Similarly, S contributes more to 

compound formation in terms of ^298 psr atom than does A1 in 

bonding to the same t-metal in most cases. 
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C. Tantalum-Sulfur vs Tantalum-Aluminum 

In the most direct comparison possible between the binary systems 

studied here, Ta2Al and Ta2S may be contrasted. Their ^nd 

AH|t,298 which may be compared immediately (without normalization 

by x+y because they have equivalent stoicbiometry) are; 

Phase |AH?^2981 ^^*at)298 

Ta2Al 8.2 kcal/mol 460.5 

Tag S 41.8 482.0 

In deducing chemical significance from this comparison, it is worthwhile 

to examine the relative effects of structure and composition. The 

average Ta-Ta bond distances in Ta2Al and Ta2S are 2.99 A and 3.03 A, 

respectively. The Ta substructures of these two phases (refer to Figures 

3 and 10) are similar in essence, each possessing central rows of atoms, 

each member of which is sandwiched between two rings of atoms staggered 

relative to one another. The main differences are in terms of the place­

ment of the non-Ta atoms. The Al-Al and S-S interactions are negligible 

in the two solids. These structural aspects combine to suggest that the 

larger enthalpy of atomization of Ta2S reflects the greater cumulative 

bond strength of Ta-S interactions as compared to Ta-Al interactions in 

these binary solids. The average bond distance for the ten shortest Ta-S 

interactions in Ta2S is 2.53 A which corresponds to a Pauling bond order 

of 0.56 while the corresponding quantities for Ta-Al bonds in Ta2Al are 

2.92 A and n = 0.29. Therefore, it is not a straightforward deduction to 
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conclude that Ta-S bonds are in general stronger than Ta-Al bonds since 

one is (in these compounds) probably not comparing bonds of the same 

order. It would be very helpful to obtain bond enthalpy information on 

gaseous Ta-S and Ta-Al species of known electronic configurations for 

further corroboration of this suggestion. 

The derived enthalpies of formation exhibit an even larger differ­

ence than do the AH|t,298 values since the atomization of Al(s) is 

more costly than that of S(s) by-^13 kcal/mol. For the majority of the 

other t-Al/t-S comparisons, both AHf,298 ^nd AHat,298 ^re larger for 

the sulfide than for the aluminide of equivalent composition, but there 

are few, if any, other instances of txAly and txSy compounds with 

the same t, x, and y whose structures are sufficiently similar to isolate 

the effects of relative bond strengths of S and A1 with a given metal. 

In fact, there are examples of reversed orders in one or both of these 

comparisons for certain t-metals and therefore it is not safe to general­

ize about either trends or their causes in comparing stabilities of 

aluminides and sulfides. The complexity of the interactions in solids 

and the resultant idiosyncrasies of individual systems require as 

detailed an examination of each system as possible. 

The Brewer-Engel model alone would not be particularly helpful in 

explaining why Ta-S interactions appear to be stronger than Ta-Al inter­

actions since it would propose that A1 employs three valence electrons 

(as sp^ ) while S (s^p**) employs only two. Equally simplistic arguments 

based on the larger electronegativity difference between Ta and S (1.0 on 

Pauling's scale vs 0.0 for Ta-Al) at least predict the correct order but 
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are, like many chemical concepts, of more questionable validity when 

applied to solids rather than to gaseous molecules. 

A more relevant and realistic approach is to compare charge density 

and density of states results derived from electronic band structure 

calculations. The only closely related systems thus examined are Zr-S 

and ZrAl; KKR method calculations having been performed at the Ames 

Laboratory in recent years on ZrS53 and ZrgAl.s^ The essential differ­

ence noted in the results is that the valence band bonding in ZrS 

involves p orbital contributions from sulfur, while the valence band in 

ZrgAl has only s orbital contributions from Al, with the A1 p states 

corresponding to the higher energy conduction band and are apparently 

nonbonding. One might propose by analogy that in Ta-S vs Ta-Al bonding 

in solids, Ta-S interactions are stronger because two electrons per S 

atom participate in bonding while only one electron per Al atom is 

involved. This is not necessarily in conflict with the B-E VB approach 

if the enthalpy gain in replacing one p electron by one s electron in the 

resultant bonding indeed outweighs the 83 kcal/mole required to promote 

Al from s2p to sp^.si 

Verification of this is not achievable in any obvious way, and it is 

similarly difficult to relate the KKR results to the physical model 

implied by the concept of electronegativity differences. 

0. Other Transition Metal-Aluminum Systems 

Another comparison requiring less speculation and independent 

corroboration is that between AHât^gge values in the Nb-Al and 
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Ta-Al systems. Here, the unraveling of compositional, structural, and 

electronic factors which combine to determine relative cohesive energies 

is simpler because Nb2Al and Ta2Al have nearly identical structures ("a", 

see Figure 10) as do NbAlg and TaAlg (TiAlg-type). It can only be 

asserted that Ta-Ta and Ta-Al bonding have a combined strength greater 

than that of Nb-Nb and Nb-Al bonding as manifested in the larger 

AHat,298 of the Ta compounds. This may again be proposed as con­

sistent with the belief, reinforced by Brewer, that 5d elements have 

greater d orbital spatial extent and therefore participate more effec­

tively in bonding both with transition metals (including themselves in 

elemental form) and with (e.g.) s orbital s of A1. 

It should be added that the visual comparison between AHf,298 

values provided earlier in Figure 16, was intended only as qualitative 

evidence of the reasonableness of the Ta-Al results and not as a quanti­

tative comparison suggesting underlying chemical differences or similari­

ties with Nb-Al compounds. There is in fact no basis, generally for 

quantitative comparisons between AH? of compounds formed from differ­

ent pairs of elements because AH^ reflects qualities of both the 

compound and elements involved. Meaningful relationships between AHf 

values are best examined within a given binary system where only composi­

tional and structural differences come into play. 
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E. Mi edema Model 

1. Description 

Any attempt to predict or model behavior should include 

features dependent on both the elements and the compounds involved or on 

differences between the elements. The method due to Miedema et al.^® 

attempts to account for of a wide variety of binary inter-

metal lies using essentially a two parameter formula. This semi-empirical 

approach may be succinctly described as follows. 

The enthalpy effects in formation of an alloy, whether a liquid, a 

solid solution, or an ordered compound, are attributed to the extent and 

quality of the surface contacts between 'macroscopic' atoms of the two 

component metals. The atoms are viewed as Wigner-Seitz cells which are, 

to first approximation, the same in shape and size whether situated in 

the alloy or in the respective metallic elements. Similar cellular 

models have been previously used with moderate success in theoretical 

attempts to account for the cohesive energies and valences of pure 

metals.55 

For intermetallic phases in general, the model contains just two 

essential physical quantities: 

AH^ - + Q(An^5 ) . (33) 

The negative term depends on the contact potential difference between the 

two metals which in most instances varies negligibly from the difference 

in the work function *. The positive term accounts for the difference in 
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the electron density at the boundary of the W-S cells. This discon­

tinuity is presumed to be smoothed by charge transfer which also results 

in volume changes in the cells. 

Determination of the more detailed forms of equation (33), which 

include the numerical values of P and Q appropriate to particular 

classes of intermetallies, was largely empirical. The ratio of Q to P 
* ,  1 / 3  

was observed to be correlated to A* /An^g and the critical ratio was 

chosen as that which correctly predicted the algebraic sign of AHf 

(taken from knowledge of the existence or nonexistence of phases in a 

given A-B system) for as many phases as possible. The best-fit value for 

P was found to differ for (1) solid or liquid alloys of two transition or 

noble metals, (ii) liquid alloys of two nontransition metals and (iii) 

solid or liquid alloys of a transition metal with a nontransition metal. 

For the latter category, of greatest interest here, an additional term -R 

was determined as necessary to bring calculated and observed signs of 

AHf into agreement. 

The simple form of the Miadsma model presented ir. equation 33 is 

adequate for disordered phases (i.e., solutions) in which the atoms are 

similar in size. The actual number of contacts between dissimilar atoms 

varies due to both the degree of order in the alloy and to the difference 

in volume of the types of atoms. Both of these variables are accounted 

for in the factor fg which represents the fraction of the nearest 

neighbors to an A atom which are of element 8. The empirically derived 

approximation is 
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= (1-C^)[1+8(C^)^1-C^)2] (34) 

and in turn, the 'surface concentration' is given by 

c  2 / 3  ,  2 / 3  2 / 3 .  
i -  Va /(^A + Ys ) (35) 

to account for the size difference between atoms A and B. 

The final expression for transition-nontransition metal inter-

metal lies is 

2 / 3  

296 = C* fg [ - ] 
A B _i/3 .1/3 P P 

(Hyj) + (Hyg) 
(36) 

2. Comparison of predictions and measurements 

Using this expression and Miedema's tabulated values for the coeffi­

cients P, Q, and R as well as the physical parameters ny/s and 

the values represented by the parabolic curve in Figure 19 were calcu­

lated for comparison to the experimentally determined A^298 for 

Ta-Al compounds. An immediately obvious discrepancy is the model's 

failure to reproduce the concentration dependence; as in many other 

systems the observed maximum in formation enthalpy occurs at other than 

the 1:1 composition, while the Mi edema equation results in a nearly sym­

metrical curve peaking at A:B =1:1 for all binary systems. This point 

is to be returned to eventually. In addition, the magnitudes of the 

prediction exceed the observed values by approximately a factor of two. 
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Figure 19. Comparison of AH^ 298^'^ i" 10^ K per mole atoms as 
measured (plotted points) and predicted by Miedema 
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and recalling that any systematic error in the P^i is likely to be in 

the direction < Pequ^i » is in error the discrepancy is 

probably larger than reported here. 

Before proceeding with an assessment of the Mi edema approach and its 

relationship to the results presented here it is appropriate to comment 

on the intent of what is to follow. It is difficult to fairly evaluate a 

model without first establishing what that model is expected to do and to 

what degree it is required to succeed. Although there is a variety of 

criteria one might apply in deciding whether or not a model is success­

ful, most would seem to be concerned with either (i) accuracy in pre­

dicting measurable quantities or (ii) credibility of the model's physical 

features. Both of these criteria as applied to the Mi edema model may be 

discussed at least qualitatively, with much greater difficulty in defi­

nitively establishing the latter. 

In a first step, the available data^ on enthalpies of formation of • 

binary intermetallics containing A1 and a transition metal or two transi­

tion metals were reviewed and compared to the values calculated using 

equation 36 (or its equivalent appropriate for the system in question). 

It was observed that of 18 t-Al phases with 1:1 stoichiometry the model 

overestimated the |AHf^298 I per mole of atoms in 10 cases, with an 

average discrepancy for all systems of-^3 kcal. Similar evidence of a 

systematic problem with the aluminides was provided by Miedema and 

coworkers^® as reproduced in Figure 20. In accounting for the behavior 

of a range of types of compounds with essentially only two parameters, 
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Figure 20. Reproduction from ref. 56 of predicted and observed 
298 compounds of a transition metal with a 

nontransition metal. Darkened points represent aluminides 
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it is to be expected that both overestimates and underestimates of 

|AHf| will result; the fact that for the aluminides the prediction is 

usually an overestimate suggests looking for some peculiarities of t-Al 

phases that distinguish them even from other intermetallics containing 

one nontransition metal. 

The electrochemical parameter <J»* for A1 has the same value, 4.0 V, 

as the experimental work function *. Therefore, one probably cannot 

account for the consistent overestimate for t-Al phases as due to an 

unrealistically large electronegativity term. Among the transition 

elements for which both experimental * and semi-empirical ** exist 

there are few instances of significant discrepancies, and the differences 

occur in both directions ($-** > 0 and < 0). Examination of the 

electron density parameter n^g for A1 and the transition metals is 

similarly fruitless in accounting for the discrepancies; the comparison 

of n^s with the ratio (8/7^)^^^ (where B = bulk modulus and is 

molar volume) to which it is related shows very strong correlation for 

both types of metals. 

The constant R which Miedema found necessary for modeling t-Al and 

similar systems is substantial, amounting to an additional negative term 

of approximately -9 kcal in the case of a 1:1 compound. This term is 

said to be due to d-p hybridization in bonding between transition metals 

and nontransition metals such as A1, Ga, Sn, Pb, Sb, and Bi, believed to 

be more effective than in pure transition metals. If such a concept has 

meaning, it is conceivable that t-Al compounds are not as well-accounted 

for as other t/non-t intermetallics because there are in fact not the 
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maximum number of Al p orbital s participating in this hydridization and 

thus the effect is smaller than -9 kcal/mole atoms. This idea was 

suggested but certainly not proven by the previously mentioned band 

calculations of Kematick. 

The perusal of available data on compounds formed by two transition 

metals yields two conclusions: (i) there is a serious scarcity of data 

relative to the total number of possible compounds and (ii) the Miedema 

model is somewhat more successful in accounting for AH?,298 for 

these phases than for the aluminides. Of 23 1:1 compounds in this class, 

11 had |AHI?,298l clearly smaller than predicted, only one clearly 

larger than predicted, and the remaining 11 (or approximately half the 

total) were within ±1 kcal/mole atoms or effectively correct. 

In response to the question concerning the predictive capability of 

the Miedema model it can, therefore, be stated in summary that (i) pre­

dictions in general are only approximately correct, with both over- and 

underestimates as compared with measured values, and that (ii) predic­

tions for transition metal aluminides seem to generally overestimate 

their stability in terms of AH?,298* The lack of sufficient data 

spanning the whole range of t-t possibilities and the use of primarily 

the sign rather than the magnitude of AHf,298 deriving the 

predictive equation may account for (i), while (ii) is speculated to be 

due to some valence-related factor making aluminides an exception to 

Miedema's proposed d-p hybridization phenomenon and the corresponding 

term -R. 
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Some additional observations concerning the presence or absence of 

physically realistic features in the Miedema model may also be made. The 

electronegativity parameter 6** is similar to parameters in other 

attempts®^ to model enthalpies of formation and certainly has intuitive 

appeal. However, the extension of this concept to solids may not be 

completely valid, as suggested by X-ray fluorescence results^? on t-Al 

compounds pointing to electron transfer from the 'more electronegative' 

A1 to the transition metal. 

Atomic size differences are often invoked in attempts to account for 

relative stability of compounds. This factor is indirectly employed by 
1 / 3  

Miedema in the positive term An^g , which is dependent on volume differ­

ences and thus on Ar of the atoms, and in the surface concentration 

factors. It appears at first glance that the most important lack of 

specificity in the model may be that structural variation is not explic­

itly included. Miedema dismisses the need for this in claiming that the 

various structures of intermetallics do not result in contributions to 

stability which depart markedly from the corresponding struccure-

dependence of stability of the component metals. This seems to suggest 

both a relative lack of intra-system variety in structures of most 

intermetallics, with a resultant small curvature in the AHf,298 vs 

composition plot, and that the intent of the model is global approxi­

mation of enthalpies rather than specificity. The latter belief seems 

reinforced by aforementioned comparisons to measured quantities. The 

former idea would be more acceptable if the Ta-Al system's variation in 
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^^f»298 were typical; however, for certain other systems contain­

ing a larger maximum laHf^ggel exhibiting more stable phases 

it is not clear that structural factors are irrelevant in explaining 

relative stability. Admittedly, it is difficult to propose a way to 

incorporate more realistic structure dependence into a model without 

approaching the large time and monetary expense incurred in quantum' 

mechanical calculations, which include the bond distances, coordination 

numbers and symmetry of a known structure. 

3. Intrasystem trends in enthalpies of formation 

It was noted earlier that the composition dependence of ' 

in many binary intermetalIic systems differs from Miedema's prediction in 

that the maximum stability actually occurs at other than 1:1 stoi-

chiometry. Speculation about the underlying factors for this asymmetry 

has led to further search for trends in and correlations between certain 

variables, mostly without producing a clear explanation. These attempts 

are summarized in what follows. 

Difference in size of the component atoms can be imagined to result 

in optimum heteroatomic contact at a composition richer in the smaller 

atom. While recognizing that the radius of an atom is at best an ad hoc 

definition, both Pauling's metallic radiiez and the radii of spheres 

equal in volume to WS cells (as used in the Miedema model) were compared 

for the components of various t-t and t-Al compounds. There appears to 

be no strong correlation between composition and radius ratio for the 

most stable compounds; there are instances such as NiTig and CrAI^ in 

which the minority atom is said to have the smaller radius. Such a 
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correlation may appear to exist for more ionic compounds where the postu­

lated radii are more significantly different. The 'radius ratios' for 

intermetallics are mostly within ±10% of 1.0 and the effect of r^/rg 

may not be large enough to outweigh competing factors. One would expect 

any correlation of this sort to be manifested in a connection between 

maximum AHf^298 ^nd coordination numbers as well, and there is 

conversely a lack of obvious coordination number effects in the data 

examined. 

Another simplistic attempt compared the number of bonding electrons 

in the component atoms to test the assumption that the most stable com­

pound has an optimum ratio (near 1:1) of valences such that heteroatomic 

bonding capacity is fully used. In a hypothetical system in which atom A 

has valence 3 and atom B has valence 2, one might expect the most stable 

compound to be A2B3. In examining t-Al, t-t, and t-S phases there is no 

indication of such a pattern. 

One possible trend was noted when the stoichiometries of the most 

stable t-Al phases (with largest !"n^^298 were compared 

across the transition series: 

— TiAl VAI3 

NbAlg MOgAlg 

LaAlg HfAlg TaAla 

CrAl^ MnAl^ 

FeAlj CoAl NiAl Cug A1 

Ago .77^^0 .23 

AUAI2 

Pdi .13AI 

PtAl 
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The most aluminum-rich compositions seem to occur near the center of each 

series, although it is tenuous to claim a consistent pattern, given the 

gaps in knowledge about the 4d and 5d metals. This could, however, be 

yet another physical property whose extremum occurs at the Mn group where 

the maximum number of unpaired d electrons is said to occur. 

Rules of thumb such as the ones explored above seem to hold more 

frequently for binary compounds formed by two elements from main groups 

at opposite ends of the periodic table whose bonding is designated as 

'ionic'. By contrast, the pairs of atoms in the intermetal1ic systems 

considered here are mostly of similar size and electronegativity, and the 

resultant compounds are sometimes referred to as 'electron compounds'. 

Their bonding is apparently more covalent, if not metallic, in character. 

4. Interpolative predictions 

The Miedema model's usefulness as an accurate predictive tool has 

been seen-to be quite limited. It is of some value in instances of 

binary systems for which no thermochemical data exist, in that at least 

rough estimates of 1^6 obtained. Miedema et al.,20 in 

fact, cite several previously unexamined systems in which measurements 

agreed well with earlier predictions. 

For systems having existing data, it is possible to 

make Interpolative predictions which can be trusted as quite accurate. 

These are based on the understanding that a given phase owes its exis­

tence at equilibrium not only to its stability relative to the elements 
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but relative to other intermediate compounds which bracket it in the 

phase diagram. Referring to Figure 19 it may be seen that TazAl^ is an 

example near the minimum limit for stability of a compound relative to 

its neighboring phases; in general the shape of the ^s 

composition curve is clearly concave downward at all points. Any hypo­

thetical phase whose optimum bonding enthalpy falls below the curve drawn 

through the stable phases does not form because its disproportionation 

into neighboring compounds is energetically favored. Likewise, a phase 

will not form with significantly larger than the exis­

ting trend because adjacent phases would disproportionate into combina­

tions including this unusually stable phase. Therefore, the definition 

of a composition curve by measured values at both 

sides of the maximum allows the interpolation of values 

for those stable (= observed) compounds not yet studied thermodynami-

cally. Table 13 lists such predictions for sulfides and aluminides; an 

obvious suggestion for future work is the experimental determination of 

these enthalpies. 
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Table 13. Predicted selected transition metal 
aluminides and sulfides in kcal/mole 

Phase Phase lAHf,2gg/(x+y)| 

TiaSs 13.0 PdsAls 12.0 

TigS 15.0 PdsS 3.9 

V3AI 2.2 AggAl 1.1 

FeaAlg 7.2 LaAlg 9.5 

FegS, 13.0 Ta^7Al12 3.0 

C03AI 19.0 PtzAl, 12.0 

CO4S3 12.0 PtAlg 11.0 

NigAlz 4.5 Au^Al 7.6 

Cu,A,, 3.7 

Nbi^Sg 21.0 

NbaiSg 21.0 

NbjS 22.0 
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VI. FINAL SUMMARY AND CONCLUSIONS 

The enthalpies of formation and atomization of Ta-S and Ta-Al 

compounds are comparable to those of phases with similar chemical 

composition. The atomization enthalpies may be taken as indication of 

cohesive strength or bonding capacity that is consistent with extensive 

Ta-Ta bonding in the most Ta rich compounds Ta2S, TagS, 'Ta2Al' and 

'Ta^Al'. Within each binary system the trends in enthalpy of formation 

suggest certain phases to be nearly unstable with respect to dispropor-

tionation at 298 K. The transition temperatures for disproportionation 

are not known, and only in the case of Tag S was such a reaction 

observed. 

Comparison of AHat,298 and between the systems 

Ta-S and Ta-Al show that net tantalum-sulfur bonding interactions are 

stronger than tantalum-aluminum interactions. This is proposed as due to 

different numbers of participating bonding orbital s and electrons as 

suggested by previous band structure calculations. 

The investigation of t-S and t-Al systems as classes of compounds 

reveals trends in bonding capacity of each component which seem to be 

related to the number of unpaired d-electrons of the transition metals. 

Trends within a group in the periodic table indicate improved bonding 

effectiveness as the atomic number of the transition metal increases. 

Both trends as well as other hypotheses are limited in supporting evi­

dence because of the lack of thermochemical data for some systems. 
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The enthalpies of formation of aluminides appear to be somewhat 

anomalous; values of t-t and other t-non-t compounds are 

more easily accounted for by Miedema's semi-empirical formula. The 

effectiveness of the d-p hybridization proposed as the explanation for 

enhanced stability of t-non-t compounds may be reduced for aluminides by 

the apparent contribution to bonding from only s rather than both s and p 

electrons. 

More empirically-based predictions for the enthalpies of formation 

of t-S and t-Al compounds may be derived from existing data and an 

understanding of the reasons for the general shape of % 

curves. Specific details such as the direction of asymmetry of the 

curves are not predictable on the basis of simple factors such as atomic 

size ratios or valence. 

The bonding interactions in solids may be considered represented in 

their complexity and resultant structural and electronic structural 

variety by the transition metal sulfides and aluminides studied here. 

Overriding principles that account for thermodynamic properties in a 

consistent and plausible way are not yet available. Further experimenta­

tion on related systems and theoretical exploration aimed at bridging the 

gap between concepts of chemical bonding and features of solid state 

physics are greatly needed. 
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TABLE Al. RAW DATA AND DERIVED Pg VALUES FROM Ta-S EXPERIMENTS 

Reaction (3) Reaction (4) 

Vf. T BEL • m. t PIS* P'Sirorr Vf. 
tn K In M In Bin In «ta in atD 

1 is7«.a « 00 )»20 0.112 C-7 0.151 C-7 
J! ISOS.O 0.S40 2100 0.153 E 7 0.390 E-' 
t i»9».a 8.S60 1620 8.198 E-T 0.521 E-7 
a 100».0 e.s3o ISCO 0.210 E-T 0.544 t-7 
]i 1*14.a 0.420 700 0.10} ET 0.7*6 E-7 
]i 1614.a 0.S90 )S60 0.111 E-7 0.678 E-T 
» 1624.3 O.SIO 900 0.122 C-1 0.79% El 
ji 1624.3 0.1)0 720 0.402 E-7 0.8)7 E-T 
II 163) m 0.410 1060 0.951 ET 0.129 t # 
II 16)) m 0.110 390 8.80» E-7 0.119 Et 
a 1633 » 0.S70 720 0.446 C-T 0.115 E-6 
a 103) » 0.400 720 0.40( r-7 0.904 E-7 
II 164) 4 0.7)0 1900 0.10] E 6 0.11! E-6 
u 164» 4 O.S90 690 0.504 ET 0.121 E-6 
» 164) 4 0.4)0 660 O.SOl E-7 0.11» E-6 
II 16»3 0 0.130 78C O.llt' E-6 0.1*7 E-6 
:i 16»).0 0.630 600 0.6l«i E-7 0.152 E-6 
3 16») $ 0.600 720 0.T2! E-7 0.14» E-6 
a 1662.i 0.410 960 0.113 E-6 0.1«r E-6 
j 1662.6 0.360 612 0.141 C-6 0.19» E-6 
a 1662 6 0.460 300 0.721. E-7 0.176 t-t 
.1 1662.6 0.760 83C 0.810 E-7 0.161 E-6 
1 1672.2 0.4)0 720 0.17:1 Et 0.22» Et 

1672.2 0.480 700 0.17» E-6 0.22? E-6 
) 1672 : 0.520 130 0.91k E-7 0.22S E-6 
) 1672.2 0.4)0 340 0.1011 E-6 0.2;* E-6 
1 1601.8 O.7S0 96r 0.211 E-6 0.202 E-6 
2 1682.8 0.740 «20 0.10!! E-6 0.259 E-6 
i 16Vl.t o.iro 756 0.271 E-6 0.164 E-6 
1 1691.4 0.600 900 0.21:1 E-6 0.29? r-6 
2 1691.4 0.760 DC 0.111 E-6 0.123 16 
) 1691.4 0.620 IS 0.3)1 E-7 0.102 E A 
1 1701.C 0.480 SU- 0.201 E-6 0.159 Et 
] 1701.0 0.810 3C0 0.:5> Et 0.376 Et 
) 1701.0 O.S20 240 0.10k E-6 0.16] E-t 
) 1701.0 0)70 180 0.10» E-6 0.34 7 E-6 
1 1710.S 0.)60 316 0.34(1 E-6 0.431 E-6 
1 1710.S 0.700 520 0.)71 E-6 0.4)1 E-6 
2 1710.S O.OSO 260 0.10* E-6 0.4S0 E-6 
2 1710.S 0.720 225 0.187 E-6 0.447 E-6 
2 1710.S 0.420 155 0.170 E-6 0.366 E-6 
3 1710.» O.SOC 180 0.231 E-6 0.452 E-6 
3 1710.S 0)10 120 0.221 E-6 0.428 E-6 
1 1720.1 0.480 300 0.443 E-6 0.428 C-6 
3 1720.1 0.320 100 O.270 E-6 0.521 E-6 
1 1729.7 0.670 172 0.511 E-6 T.65: E-6 
2 1729-7 O.SOO 121 0.271 r-6 0.616 Et 
1 1739.3 0.300 270 0.561 E-6 0.702 E-6 

DOT. T 
In K 

Ul«.» 
iMj.a 
Ifcbl.O 
ItSl.O 

IH2.2 
IkBl.a 
>«91.4 
u»;.4 
1710.s 
1710.5 
172».7 
172».7 
171».7 
1748.9 
1746.9 
1740.9 
1740.9 
1740.9 
1740.9 
1740.9 
1700.1 
1760.1 
17*0.1 
1707.] 
1707.3 
1707.1 
1707.) 
1787.) 
100».» 
180t.» 
1000.S 
10)5.7 
102».7 
182».7 
182».7 
102».7 
102» .7  
182» .7  
1844.9 
1844.9 
1844.9 
1804.1 
181,4.1 
1804.1 
1073.7 
1003.3 
1003.) 
1092.8 
1902.4 
1902.4 

EEL 
In • 

EC. t 
In am net 

In ata 

0.510 1480 0 lie E-
0.460 1040 0 209 E-
0.360 960 0 144 E-
O.SIO 2040 0 155 E-
0.370 140 e 561 E 
0.550 960 0 499 E 
e.»40 1200 e 612 E 
0.850 1060 0 69C E 
0.490 •40 0 796 E 
0.460 1176 0 187 E 
0.720 600 0 104 E 
0.520 S4C 0 124 E 
0.440 706 0 26) E 
0.230 13» 0 148 E 
0.400 100 0 174 t-
0.600 660 0 407 E-
0.670 610 0 166 E 
0.740 930 0 177 E-
0.510 160 0 211 E-
0.590 240 0 211 E-
0.400 16b 0 19* E 
0.»10 270 8 246 E-
0.420 148 • 552 E-
0.490 135 0 306 E-
0.460 240 0 3*2 E-
0.»00 240 0 067 E 
0.700 160 0 634 E 
0.48C 270 0 79) E 
0.650 124 8. 435 E 
0.4»0 100 0.540 C 
0.»10 196 0. 112 E 
0.*5( 112 0 618 E-
0.600 ISt 0. 660 E 
0.600 1»0 0. 165 E 
0.690 180 0. 161 E-
0.760 196 0. 161 E 
0.390 135 0. 137 E-
0.170 120 0. 143 E-
0.500 43 0. 906 E 
0.700 66 0. 057 E-
0.510 104 0 212 E 
0.620 40 0 122 E-
0.560 50 0 119 E-
0.610 75 0. 321 E 
0.650 11 0. 165 E 
0.500 10 0. 195 E 
0.420 25 0. 206 E-
0.650 22 0. 226 E 
0.150 16 0. 241 E 
0.290 12 0. 291 E 
0.670 17 0. 304 C-
0.540 16 0. 175 E-

PitlCbrt 
In at* 

0.327 z-y 
0.497 t-7 
0.844 I 7 
0.021 t-7 
O.ili C-« 
0.12: C-t 
0.11* C-« 
0.i«3 E ( 
0.1»: L<« 
0.23* E-t 
0.]«] l-( 
0.242. E t 
«.)»( E * 
0.)»3 E-t 
0.1)» Et 
0.»H E * 
0.404 Et 
0.472 E 0 
0.»#* E-« 
0.»0» E-t 
0.4*4 Et 
0.471 E-t 
0.*9» E-t 
0.7)4 E-t 
O.tTI E-t 
0.111 S-5 
0.116 ES 
0.100 E » 
O.lOf E » 
0.1(7 E ! 
0.14t E » 
0.149 E-; 
0.13C E-S 
t.2n E » 
0.20» E 5 
0.20! E » 
0.170 ES 
0.177 ES 
0.22) E » 
0.201 El 
0.267 ES 
0.297 ES 
0.278 E-f 
0.411 E-S 
0 ) 9 0  E S  
0.361 ES 
0.394 ES 
O.SSJ E-S 
0.4ÎÎ ES 
O.SSS ES 
0.733 E-ï 
0.74) E-S 
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0.410 IBO 0 
0.710 312 0 
O.SIO 216 0 
0.600 276 0 
0.850 450 0 
0.B20 110 0 
0.710 120 0 
0.670 116 0 
0.510 9C 0 
0.B5C 150 0 
0.520 1B9 0 
0.510 90 0 
0.5B0 170 0 
0.470 50 0 
0.550 70 0 
0.720 170 0 
0.160 45 0 
0.620 120 0 
0.640 114 0 
0.610 lia 0 
0.560 111 0 
0.610 150 0 
0.500 17 0 
0.710 55 0 
0.770 70 0 
O.4B0 47 0 
0.550 97 0 
0.920 BO 0 
0.680 104 0 
0.440 16 0 
0.410 2* 0 
0.540 66 0 
0.500 26 0 
0.710 BO 0 
P.610 74 0 
0.B20 102 0 
0.140 14 0 
0.590 25 0 
O.BSO 4Î 0 
O.SBO 45 0 
0.260 IB 0 
0.170 16 0 
0.560 54 0 
0.600 24 0 
0.590 50 0 
0.760 25 0 
0.520 IB 0 
0.45D 14 0 
0.510 16 0 
0.510 14 0 

i:-6 0 .850 E-t 
l:-6 0 84? C-6 
i-:-6 0 86» E-6 
lC-6 0. 825 E-6 
K-6 0. 755 E-6 
i:-6 0. 968 E-6 
i:-6 0. 802 E-6 
i:-6 0. 786 E-6 
i:-6 0. 892 e-6 
1-6 0. 892 E-6 
i:-6 0. 102 E-5 
1:6 0. 921 Et 
l>6 0. 123 E-S 
K-6 0. 122 ES 
i:-6 0 122 1-5 
1: 5 0 .150 E-5 
1:6 0. 128 E-5 
1:5 0. ,180 E-5 
I:-5 0. .171 ES 
K-5 0 161 ES 
I;-5 0. 177 E-5 
1: 5 0. 158 ES 
I:-6 0. .172 E-S 
1: 6 0, 165 ES 
K-6 0. 168 E-5 
I:-6 0. ,159 E-5 
1:5 0. .201 ES 
1: 6 0. ,17» ES 
1:5 0. ,213 L 5 
I:-5 0. ,221 ES 
i:-5 0. 212 E-5 
i:-5 0. 284 ES 
i:-5 0. 246 ES 
1: 5 0. 1:1 ES 
i:-5 0. 307 E-5 
1-5 0. 296 E-5 
1: s 0. 100 E-S 
i:-5 0. 291 ES 
R.-5 0. %B7 t-5 
1:5 0. ,294 E-5 
1:5 0. 214 ES 
1:5 0. ,292 ES 
I;-5 0. 167 E-5 
1-5 0 ,Î;I E-S 
1: ! 0. 420 ES 
1: 5 0. .175 E-5 
1-5 0. .419 E-S 
1: s 0. 196 ES 
1:5 0. 479 ES 
1: 5 0. 510 ES 

«91 
(61 
«n 
40F 
357 
35] 
466 
466 
•12 
502 
9B4 
517 
649 
119 
704 
143 
117 
112 
141 
13B 
761 
741 
904 
B67 
162 
995 
IBB 
122 
101 
229 
IIB 
260 
251 
241 
140 
137 
162 
165 
139 
140 
lot 
16B 
144 
181 
235 
191 
271 
105 
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TABLE A3. vs T DATA FROM Tag/Al^/TagAl REGION 

T PlAl ) T P(A1) T P(A1> 

1366 0 191E-06 1483 0 172E-05 1568 0 531E-05 
1286 0 l<?7e-06 1483 0 146E-0S 1568 0 610E-05 
1386 0. 190E-06 1433 0. 153E-05 1568 0 628E-05 
1237 0. 184E-06 1490 0 162E-05 1568 0. 512E-05 
1387 0 200E-06 1491 0 160E-05 1568 0 581E-05 
1425 0 424E-06 1491 0 135E-05 1577 0. 752E-05 
1425 0. 413E-06 1491 0 143E-05 1577 0. 759E-05 
1435 0 549E-06 1491 0. 155E-09 1977 0.691E-09 
1435 0 5845-06 1491 0 159E-05 1578 0. 714E-05 
1435 0 560E-06 1491 0. 908E-06 1578 0. 688E-05 
1435 0 294E-06 1491 0. 131E-05 1578 0. 735E-0S 
1435 0 537E-06 1500 0 195E-05 1580 0 927E-05 
1435 0. 650E—06 1500 0. 191E-05 1580 0. 908E-05 
1435 0. 507E-06 1501 0 191E-05 1580 0.882E-0S 
1435 0. 565E-06 1501 0. 187E-05 1580 0. 867E-05 
1435 0 604E-06 1501 0. 187E-05 1580 0 952E-05 
1435 0 623E-06 1501 0. 167E-05 1580 0.930E-05 
1435 0 515E-06 1510 0. 225E-05 1580 0. 899E-05 
1435 0 546E-06 1510 0 237E-05 1580 0. 952E-05 
1435 0. 507E-06 1510 0 230E-05 1580 0. 940E-05 
1435 0 519E-06 1510 0 222E-05 1580 0 857E-05 
1435 0, 450E-06 1510 0 225E-05 1580 0 922E-05 
1435 0 619E-06 1511 0 200E-05 1580 0 911E-05 
1435 0 574E-06 1511 0. 195E-05 1580 0 979E-05 
1435 0. 394E-06 1511 0 191E-05 1580 0. 993E-05 
1435 0. 440E-06 1519 0 278E-0S 1587 0 771E-05 
1435 0. 530E-06 1519 0. 274E-05 1587 0. 8S0E-05 
1435 0. 569E-06 1520 0 23SE-05 1587 0 877E-05 
1435 0 655E-06 1520 0. 271E-05 1587 0. 830E-05 
1444 0. 614E-06 1520 0 266E-0S 1587 0 861E—05 
1444 0 638E-06 15:0 0 251E-05 1587 0 725E-05 
1444 0 627E-06 1528 0. 326E-05 1587 0 693E-05 
1444 0 561E-06 1529 0. 331E-05 1587 0 805E-05 
1444 0. 642E-06 1529 0 315E-05 1596 0 995E-05 
1444 0 361E-06 1529 0 :e2E-05 1596 0. 103E-04 
1444 0 608E—06 1529 0 264E-05 1596 0 102E-04 
14Î3 0 771E-06 1529 0 290E-05 1596 0. 896E-Û5 
1453 0 767E-06 1529 0 322E-05 1597 0. 975E-05 
1453 0. 77eE-06 15:9 0 269E-05 1597 0 B94E-0S 
1453 0 621E-06 1531 0. 385E-05 1597 0. 949E-05 
14=3 0. 743E-06 1531 0. 338E-05 1605 0. 113E-04 
14:4 0 779E-06 1531 0 368E-05 1606 0. 104E-04 
1454 0 6S4E-06 1531 0. 395E-03 1606 0. 104E-04 
1454 0 642E-06 1531 0. 379E-05 1606 0. H4E-04 
1454 0 44IE-06 1531 0 375E-05 1606 0. 119E-04 
1162 0 1:31 z .  •Î07SI--C3 loGo C. 1Î7E—04 
1463 0 8S2E-06 1531 0 389E-05 1606 0. 975E-05 
14a3 0. 939E-0Ô 1531 0. 385E-05 1606 0, 933E-05 
1463 0 904E-06 1531 0. 430E-05 1606 0. llOE-04 
1463 0. 947E-06 1532 0. 369E-05 1615 0 131E-04 
1463 0 545E-06 1532 0 382E-05 1615 0 123E-04 
1472 0 114E-05 1532 0. 429E-05 1616 0 120E-04 
1472 0. lllE-05 1532 0 389E-05 1616 0. 131E-04 
1472 0 937E-06 1538 0 338E-05 1616 0. 138E-04 
1472 0 llSE-05 1539 0. 392E-05 1616 0. 139E-04 
1472 0, 102E-05 1539 0 397E-09 1616 0. 128E-04 
1473 0 644E-06 1539 0. 376E-05 1624 0. 150E-04 
1473 0 109E-05 1539 0. 3955-05 1625 0. 147E-04 
1473 0 922E-06 1539 0 351E-05 1625 0. 143E-Û4 
1481 0 134E-05 1548 0. 471E-05 1629 0. 161E-04 
1482 0 . 129E-05 1548 0. 383E-03 1626 0. 139E-04 
1482 0 133E-05 1548 0. 369E-0S 1629 0. 208E-04 
1482 0 782E-06 1348 0. 399E-05 1629 0 199E-04 
1482 0 147E-05 1548 0 453E-05 1629 0 209Ç-04 
1482 0 152E-05 1549 0 412E-05 1629 0 213E-04 
1482 0 157E-05 1558 0. 542E-05 1629 0. 188E-04 
1482 0 164E-05 1558 0. 473E-0S 1629 0. 20SE-04 
1482 0 . 146E-05 1558 0. 559E-05 1629 0 219E-04 
1482 0 149E-05 1558 0 522E-03 1634 0. 171E-04 
1482 0 .158E-05 1558 0 488E-05 1635 0 1785-04 
1482 0 . 155E-05 1558 0 537E-0S 1635 0. 167E-04 
1482 0 164E-05 1567 0. 553E-05 1635 0. 176E-04 
1483 0 174E-05 1568 0 6385-05 1645 0 197E-04 
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X. APPENDIX B: PHASE TRANSITIONS IN MANGANESE ARSENIDE 
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A. Introduction 

Much of what may be regarded as creative or original in scientific 

endeavors is essentially the unprecedented pairing of existing techniques 

or paradigms with problems which also have a history. Whether or not the 

tests of time and subsequent study prove that such initial attempts were 

insightful or merely clever and unusual, attacking old problems with 

tools not previously recognized as most appropriate for their solution 

has both probable and potential, (but not guaranteed) value. Specif­

ically, it most likely will result, at the very least, in (i) a greater 

appreciation of the strengths and limitations in application of the tech­

nique in question. In addition, it can (ii) reveal additional facets of 

the problem or system being studied and suggest paths to their resolu­

tion, if not actually solving them. And finally, if an investigator is 

fortunate, his/her viewing the situation from an uncommon angle can lead 

to open-mindedness conducive to (iii) a discovery that was not the 

original aim of the project. 

The author's reinvestigation of the phase transitions in manganese 

arsenide (MnAs) using the Rietveld, or total profile analysis method was 

(at the outset) recognized as an example of the sort of undertaking just 

described. It is regarded in retrospect as having paid dividends in the 

sense of (i) and (ii) above, and intermediate developments briefly 

inspired hope that a revelation as in (iii) would occur. When the latter 

did not come about and the significance of the results was weighed vs 
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those of the Ta-Al and Ta-S studies, it was decided to feature the 

thermochemistry while reporting the Rietveld analysis here in a separate 

appendix. While admittedly the order and format of this reporting were 

arbitrarily chosen, their intended purpose is to clearly distinguish this 

section as unrelated and subordinate to the thermodynamics results of the 

main text while still paying due attention to a piece of work believed to 

be worthwhile in its own right. The exposition here was approached in 

proportion to this project's relative significance and is therefore less 

detailed, especially in terms of discussion of results, than in the main 

body of the dissertation. 

B. Phase Behavior of MnAs and Phase Transitions in General 

Phase transitions, taken in the broadest sense, are probably as 

frequently observed by the general public as well as by physical scien­

tists as any type of natural phenomenon. As one limits focus to consider 

more specific kinds of phase transitions, however, one encounters less 

common events which are not as easily detected as the dramatic and 

familiar melting of ice or boiling of liquid water. The latter are 

examples of Ist-order phase changes, in which the molar volume and 

entropy of a substance, both first derivatives of its chemical potential, 

jump discontinuously at some point in thermodynamic space. First order 

transitions are not limited to changes in 'states of aggregation' {solid 

- liquid, solid ^ gas, liquid - gas), but also include transformations 

from one solid form to another, as in the equilibrium between rhombic and 

monoclinic sulfur at ~95°C. An additional category, 2nd-order 
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transitions, includes other solid-solid transformations in which the 

associated observable effects are even more subtle. Here, the discon­

tinuities with respect to T and P occur in second-and higher-order 

derivatives of the chemical potential such as heat capacity (e.g., the 

lambda point in 3-brass) or isothermal compressibility, but not in V 

and S. Other criteria distinguishing Ist-order from 2nd-order processes 

are that (i) two phases coexist in equilibrium in a Ist-order transition 

but not in the 2nd-order type and (ii) no measurable variable "antici­

pates" the abrupt property increments about to occur as a Ist-order 

transition point is neared, while for 2nd order processes it is possible 

at least in principle to observe continuous variations in certain quanti­

ties in that region of thermo space. In certain cases, one observes 

changes in (i) crystal structure, which changes culminate in the gain (or 

loss) of symmetry elements at the transition point, or in (ii) Cp 

which has a gradual rise close to the transition point. 

In addition to the aforementioned observations via which one may 

characterize continuous or 2nd-order processes (a few relevant examples 

will be cited later), there exist theoretical treatments, the most note­

worthy of which, by Landau^ clearly spells out criteria that must be met 

if a process is to be labeled '2nd-order'. In the discussion of Landau's 

theory by Franzen,^ there is an emphasis on its relevance to chemistry, 

and the ways in which the theory relates thermodynamics to symmetry 

properties are illustrated both schematically and through examples. One 

salient aspect of this treatment is its expression of the Gibbs free 
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energy of a solid in terms of a disorder parameter, n. It was recognized 

that this is usually a quantity whose functional form is only qualita­

tively known. A desire to accurately determine the n parameter for a 

known 2nd-order transition was the initial motivation for this study and 

for some time that remained the sole purpose. 

The aspects of the phase behavior of MnAs which are immediately 

relevant to this effort will be summarized first, with more detailed 

exposition of these and other known properties to come later. MnAs is 

found to exhibit two closely related crystalline modifications: a hex­

agonal (Pôg/mmc) form of Ni As-type structure (Figure 81) and an 

orthorhombic (Pnma) form of MnP-type. What is unusual is that the more 

symmetrical hexagonal structure occurs below as well as above the tem­

perature range (39'-125*C) in which the distorted orthorhombic structure 

is stable, while ordinarily one expects the higher symmetry form to exist 

at higher temperature. While a phase transition between these structures 

meets the Landau criteria alluded to above (e.g., group-subgroup 

relationship between P6,/mmc and Pnma), only the transition at ~125°C was 

considered to be of 2nd order while surprisingly, a clearly 1st order 

transition occurs at ~39°C. That is an interesting point in itself and 

one on which much study on MnAs has been centered. The focus here, 

however, was on characterization of the second order change as T 

approaches ~125'C. To accomplish this, the broad objective was to 

measure and analyze X-ray powder diffraction profiles for precise 

determination of both lattice parameters and atomic positions. 
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Figure Bl. NiAs-type (hexagonal) structure of MnAs emphasizing a single 
unit cell and the AbAc stacking of hep layers. Mn atoms are 
at z = 0 and V2 J As atoms at " and - 7,^ 



www.manaraa.com

124 

C. Experimental Approach 

The choice of specific experimental and data analysis techniques was 

not difficult. For most continuous transitions the obvious method for 

achieving our aims would be temperature-dependent Guinier camera measure­

ments, then carefully analysis of the pattern's line positions for 

lattice parameter determination, as done by Franzen and Wiegers^ for the 

transition by VS, and then determination of the relative intensities of 

appropriately chosen lines for calculation of atomic coordinates (as in 

the study of 8-SnS and 3-SnSe by von Schnering and Wiedemeie/*). How­

ever, because there are, due to the relatively high symmetries involved 

for MnAs, many 29 regions in the powder data with overlap of multiple 

lines, and because the even more important information contained in 

nonoverlapped superstructure lines could be beyond the sensitivity of 

film techniques due to the small extent of structural distortion,® 

Guinier analysis was deemed inadequate. The alternative of the Rietveld 

or total-profile method was chosen because it can in principle overcome 

both of these difficulties, as will be explained in a section describing 

the technique. 

D. Historical Background on MnAs 

The perceived importance of MnAs as a subject of study is clear to a 

reviewer of the literature; an unfolding of its history will convey that 

as well as setting the stage for presenting the potential implications of 

the Rietveld analysis and its supporting experiments. 
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The earliest reported experiments by Bates® (1929), Serres? (1947), 

and Gui 1laud® (1951) focused on the magnetic ordering behavior of MnAs, 

which was undisputedly of ferromagnetic character below the transition at 

39°C. These first three experimenters all performed temperature-

dependent susceptibility measurements, which they interpreted as indica­

tive of antiferromagnetic ordering above T]_ (39°C) because of the charac­

teristic rise in x with T. Cursory neutron diffraction experiments on 

powdered MnAs by Bacon and Street® (1955) failed to confirm any magnetic 

ordering in this intermediate region. In the meantime, Willis and 

Rooksbyio (1954) did the only systematic determination of lattice parame­

ter dependence on T, but claimed the symmetry was hexagonal both below 

and above T^, and also rationalized the discontinuity in unit cell volume 

at Ti as consistent with a ferromagnetic + antiferromagnetic (F+A) 

change. Kornelson^^ (1961) was the first to show that the MnP-type 

orthorhombic symmetry existed above T^, concluding this from line 

splittings in well-resolved X-ray powder diffraction profiles. Other 

studies returned to the antiferromagnetic ordering controversy and 

attempted to reconcile the susceptibility and neutron diffraction 

results, which argue respectively for and against A ordering. Kittel,^^ 

in a theoretical treatment and Basinski, Kornelson and Pearson^^ (1961) 

and Frazer and Brown^^ (1961) with x vs T measurements supported the 

claim for A-ordering. Bean and Rodbell^^ (1962), with a theory and 

deBlois and Rodbell^® (1963) with supporting experiments showed that a 

first-order or discontinuous volume change at T^ was not inconsistent 

with an F+P (paramagnetic) transition 
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and adopted the view that the latter is a correct description of the 

magnetic behavior above . This view remained the general consensus for 

some time. It is internally consistent in accounting for most of the 

observations of the phase behavior of MnAs, and is not refuted by the 

observation of a X-point in Cp vs T at Tg (~120°C) by Grdnvold, 

Snildal and Westrum^? (1970). That feature can be attributed to a 

continuous structural change (but not necessarily a concomitant change in 

magnetic order) between the intermediate and high-T regions, but the rise 

in X with T for 39°C < T < 125°C remained unexplained. Goodenough and 

Kafalas^® (1967) proposed a theoretical explanation invoking a high spin 

low spin change in Mn atoms at Tj, but this was discredited by 

Schwartz, Hall, and Felcher (1971)^^ whose neutron scattering experiments 

showed no such spin change. 

Probably the most relevant or similarly motivated study for this 

work was that by Wilson and Kasper^ (1964) on single crystal MnAs. In 

that investigation intensity data were taken from a twinned crystal of 

MnAs at 55*G, at which temperature the distortion from hexagonal symmetry 

should be near its maximum extent since the structure is believed to 

revert continuously to NiAs form as Tg is approached. Their relevant 

findings were (i) the smallness of the distortion in the atomic coordi­

nates Zmp and X^s (relative to that in the structure of MnP, 

e.g.) and (ii) qualitative verification that superstructure lines of type 

hkl, k + 1 = 2n + 1 diminish in intensity as T nears Tg, although refine­

ment of the structure from this latter information was not attempted. 

That was the unfinished task taken on by the current work. 
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After over a decade during which no further enlightening work on 

MnAs was reported, a theoretical explanation of its phase behavior was 

published by Kato et al.^o (1983). Their model arguably accounts for the 

antiferromagnetic-like susceptibility vs temperature curves without the 

need for magnetic ordering. Awareness of this explanation did not occur 

until the Rietveld analysis was well underway and an additional experi­

ment (neutron diffraction) had been arranged. Comparison of current 

findings with those of Kato et al. and additional comments on their 

contribution to the problem's resolution is contained in the discussion 

section. 

E. The Rietveld Method 

As mentioned earlier, it is often impossible to make use of all the 

structural information in a powder pattern if integrated intensities of 

peaks in the pattern are used, because regions where peaks overlap 

strongly are not easily resolved into their individual contributing 

reflections. The Rietveld method, named for its inventor,takes the 

alternative approach of fitting a structural model to the entire diffrac­

tion profile and thereby dealing with the complex shape of the overlapped 

regions. In fitting to the whole pattern, this approach also makes use 

of the presence or absence of peaks in addition to those likely to be 

observed and indexed by visual inspection of film, and so truly obtains 

the maximum information available from powder diffraction data. As 

pointed out by Werner^^ (1981) the Rietveld technique has its ultimate 

importance and power in refinement of structures for which a reasonable 
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guess already exists, and is augmented by use of the most accurate rela­

tive intensity data, achieved by step scanning with a powder diffrac-

tometer. 

While the method was developed by Rietveld for analysis of neutron 

diffraction data originally, it has been modified numerous times to deal 

with X-ray profiles as well. A major obstacle to this adaptation was 

acquiring a function to accurately describe the shape of an X-ray powder 

diffraction peak. As discussed by Wiles and Youngp^ (1981) and by 

Santoro and Prince^** this seems to be best accomplished by various 

contrived functions, e.g., 'pseudo-Voigt' or "Pearson VII' functions 

which are intermediate in form between Lorentzian and Gaussian 

lineshapes (see Figure B2). 

Specifically, the Rietveld method, as implemented in the FORTRAN 

program used here, due to Wiles and Young minimizes a weighted nonlinear 

sum-of-squares residual: 

* = % 

I 

in which the weights W-j are defined as l/o^, o-j being the esti­

mated standard deviation in the measured intensity Yi^o at a given 

angle 29i in the profile. Yi,c is calculated from an equation of 

the form 

Y i . c  =  '  :  L k l F k l '  •  ' » i  -  *  \ i  

k 

in which parameters have the following meaning: 
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Peak Shape Functions 

Gaussian too 
sharp, dies too 
rapidly 

observed profile,best 
approximated by pseudo-Voigt 
or Pearson 301 function 

Lorentzian too brood, 
dies too slowly 

Figure B2. Comparison of peak shape functions used in attempts to fit 
X-ray diffraction profiles. All peaks have the same total 
area and FWHM 
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A scale factor 

L|( combined Lorentz, polarization, and multiplicity 
factors 

F|( structure factor 

P|( preferred orientation function 

* profile function, including asymmetry 

Ybi background intensity 

The background intensity is approximated by a polynominal with terms to 

fifth order in 29. The Yi,c ^t a given step may contain contribu­

tions from the "tails" of several nearby peaks. 

The actual minimization uses the matrix method known as the 

Newton-Raphson algorithm. Ordinarily, the criterion for goodness of fit 

is the weighted profile R factor: 

of which the numerator is the minimized quantity. Although this is the 

most meaningful measure of accuracy of a refinement, it is not useful in 

comparisons with fits to data from other diffractometers or unrelated 

compounds because fit quality is affected by undeterminable instrumental 

factors and by variation in sample quality. In addition, Rp^w is 

not relevant for comparison with single crystal R-factors (which are 

defined differently) and therefore it is desirable to derive from a 
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Rfetveld fit some quantity that makes such comparisons possible. That 

quantity is 

IV,u 

k 

in which and 'Ik,o' are integrated intensities for given 

reflections K which come, respectively, from the area under an idealized 

calculated peak and from contributions to the net observed peak area 

assumed to be allocated in the same proportions as those in the model. 

Rg is flawed in that this proportional allocation of intensities biases 

the fit in favor of the starting model, and must be used with that caveat 

in mind. Interestingly, Rg can be impressively small (e.g.,~5%) even 

when visual comparison of the calculated and observed fits shows rela­

tively severe discrepancies in fitting individual peaks, because it 

relies on peak area, not peak shape. It is therefore best regarded as an 

indicator of correctness of the structural parameters in the model (as 

opposed to those factors affecting peak shape or those due to crystallite 

orientation). 

In summary, one employs the method by making a starting guess of 

both structural variables (lattice parameters, temperature factors, and 

atomic positions, etc.) and instrument- and sample-dependent variables 

(peak shape parameters, preferred orientation, 28 zero point correction, 

etc.) and allowing refinement to proceed until some predetermined 

iteration-terminating criterion is met. 
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F. Experimental 

1. Sample preparation 

Single phase MnAs samples were made using a typical high temperature 

synthetic technique in which the reactants are sealed in an evacuated 

fused silica ('quartz glass') tube, heated until initial stage reaction 

stops, cooled to room temperature, then homogenized by fine grinding and 

repeated high temperature annealings similar to the first heating step. 

In detail, this was accomplished as follows: amounts of elemental As 

(lump form, Puratronic, m 99.9999%) and Mn (granular, m 99.9%) corre­

sponding to a 5-10 atomic % excess of As and totaling up to 15 g in 

mass were melted together at temperatures up to 900*C. Early trials in 

which the silica container cracked while cooling led to the precaution of 

sealing one such tube inside another for an extra layer of protection 

from oxidizing environments. After this first step, a large solid mass 

resulted, the pulverization of which, using a mortar and pestle, usually 

required considerable effort. The second step was usually performed at 

about 850°C-50C°C for 3-4 days with one end of the reaction tube 

extending slightly out of the hot zone of a horizontal tube furnace to 

allow condensation of unreacted arsenic. It was expected that this would 

result in nearly stoichiometric MnAs, as the compound's homogeneity range 

had been reported as MnAso.99 to MnAsi.oo»^^ and indeed a chemical 

analysis performed by Ames Laboratory analyst M. Tschetter yielded 

MnAsi.002' This same sample exhibited NiAs-type structure in a Guinier 
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powder diagram (Table Bl) and yielded ao = 3.7190(2) A, Cg = 5.705(1) 

A, Co/ao = 1.534 . Previously reported values (see Table B2) in the 

literature ranged from 3.72 to 3.725 for ao and 5.702 to 5.713 for 

CQ. Separation of the product from bulk contaminants such as fragments 

of glass from the reaction tube was easily achieved by using a strong 

magnet since MnAs is ferromagnetic at room temperature. 

2. Data collection 

As compared with a routine powder diffractometer scan, only minor 

adaptations were necessary for these measurements. A schematic diagram 

of the sample holder is seen in Figure 83. At the outset, heating of the 

aluminum sample holder was accomplished using only an Acra-Watt resistive 

patch heater of 10 Watt rating attached to the bottom of the holder. To 

achieve higher temperatures and to minimize temperature gradients in the 

sample, the holder was also heated radiatively from above using a 250 

Watt infrared lamp. Power inputs from both the patch heater and the IR 

lamp were controlled using a Variac to continuously adjust the applied 

voltage. Temperature of the sample was monitored both from below and 

above using identical chromel-alumel thermocouples attached to AD 2050 

digital meters. In this manner, a desired temperature could be achieved 

manually; adjusting the two power inputs in a roughly proportional 

fashion was attempted to avoid thermal gradients. The latter were seen 

to consistently be 2°C or less from top to bottom of the sample holder. 
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Table Bl. Guinier X-ray diffraction data on polycrystalline MnAs at room 
temperature. Indexing corresponds to P63/mmc. CuKo radiation 
was used 

20 d(A) h k & 

27.666 3.222 1 0 0 
31.311 2.854 0 0 2 
31.882 2.805 1 0 1 
42.284 2.136 1 0 2 
49.938 1.860 1 1 0 
59.601 1.550 2 0 1 
65.392 1.4260 0 0 4 
66.628 1.4025 2 0 2 
77.620 1.2290 2 0 3 
80.644 1.1904 2 1 1 
85.788 1.1317 1 1 4 
86.922 1.1198 2 1 2 

Table B2. Lattice constants (in A) of hexagonal (P63 /mmc) MnAs at room 
temperature 

°o =0 References 

3.7185(3) 5.7037(6) this work, sample #4 
3.7190(2) 5.705(1) this work, sample #3 
3.720(1) 5.710(2) 25 
3.72 5.71 26 
3.722 5.702 27 
3.725 5.713 28 
3.724 5.706 10 
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X-ray 
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powdered sample 
(0.01" thick) 
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to power supply 

Figure B3. Schematic diagram of the powder diffractometer as adapted for 
use at elevated temperatures. "X" indicates positions of 
thermocouples 
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and stability of a temperature for a fixed power input was approximately 

±2°C for as long as 12 hrs even though no feedback control was employed. 

Because intensity data of excellent and reproducible quality were 

desired, various tests of sample and scanning characteristics were done 

to determine their effectiveness in improving the profile. By trial and 

error it was first determined that a step size of 0.02° to 0.03° in 2Q 

was optimum. This proved to be the angular increment below which no real 

improvement in detail of a profile could be attained. 

Three common sources of intensity errors and suggested practices for 

their elimination are described by Klug and AlexanderFor each type 

of error, short scans of the (101) peak in the MnAs room temperature 

profile were repeated with varying scan-time and sample characteristics 

to determine amounts of correction necessary to achieve acceptable repro­

ducibility in the intensities. The first type of error is random statis­

tical fluctuation in the X-ray photon rate as counted by the detector, 

presumed due to instability in either the intensity of the incident X-ray 

beam or in the detector response. This fluctuation is a type of high 

frequency noise, which is expected to average to zero given sufficient 

time, and therefore longer counting times at each % should result in 

greater reproducibility in lobs* A second source of error, caused 

by too large an average particle size, is the random nonrepresentative 

distribution of Bragg scattering planes; i.e., even in the absence of 

preferred orientation the crystallites will not necessarily lie in an 

arrangement which exposes Bragg planes to. the incident beam in proportion 

to their relative multiplicities, because there are too few crystallites 
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in the effective volume "seen" by the beam. Thus, the heights of dif­

fraction peaks relative to each other will be different with each 

deposition of a sample, and a meaningful test would be to observe what 

scatter resulted in the step-by-step average of intensities measured for 

several different samples, and how that scatter would be reduced by using 

finer particles. Unfortunately, the depth and smoothness of the sample 

layer also affect overall and relative intensities and are difficult to 

reproduce exactly from one sample deposition to the next, so repro­

ducibility of relative intensities was instead gauged by the size of 

Rp,w, the Rietveld fit criterion for an entire diffraction pattern, 

for particle sizes differing by roughly a factor of 10. The~10 w 

particle size finally used was achieved by prolonged grinding of the MnAs 

powder suspended in isopropanol in a ceramic ball mill. Contamination 

incurred at this stage was removed by flotation and décantation. 

The results of the scan time and particle size tests are summarized 

in Table B3, along with the characteristics of actual experimental scans. 

Â third problem, preferred orientation, was thoroughly tested for and 

never conclusively found. No particular crystallite morphology that 

would be expected to allow for orientation in any given direction could 

be observed using an optical microscope. The prolonged grinding of the 

sample likely reduced whatever degree of distinct crystallite shape 

existed originally. As preferred orientation is not a well-understood 

concept, and was probably not a factor in this work, it will not be 

discussed further here. 
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Table B3. Data collection parameters: (i) scan time, (ii) and (iii) 
sample quality 

(i) Dependence of random counting errors on dwell time for scan of 
(1 0 0) peak centered at 20 = 12.64 (Mo radiation) 

Time (sec) Avg. std. dev./step 

2 9.1% 
4 7.7% 
6 5.5% 

(ii) Dependence of profile reproducibility (assessed in terms of 
goodness-of-fit) on average particle size in sample 

Avg. size (microns) R P.w 

>100 u 18.5% 
10 u 13.0% 

(iii) Relationship of required sample thickness t® to linear 
absorption coefficient y 

Mo Kg Fe Kg 

340 cm'i 750 cm"^ 
required t*^ 0.005 cm 0.002 cm 

actual thickness: ~0.01 in or ~0.015 cm 

^Minimum t for maximum diffracted intensity, calculated from 

t  >  — s i n  0  ( s o u r c e :  S t o u t  a n d  J e n s e n ) .  
- 340 cm-i p' 

^Calculated from w = — % (u.).- (source: International Tables for 
V . 

X-ray Cryst., v 3).3i ^ ^ 
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The diffractometer merits a brief description. It is a Picker 

instrument provided and maintained by J. E. Benson of the Ames Lab X-ray 

diffraction group headed by R. A. Jacobson. It has the common flat-plate 

sample holder and a geometrical arrangement in which the beam source and 

detector move synchronously while the sample position is fixed. The 

X-ray beam is monochromatized at the detector using a graphite (111) 

crystal; K and K components remain in the beam. Ordinarily for Fe 

target radiation, the accelerating voltage and current are 50 kV and 14 

mA, respectively, and for Mo radiation the values are 50 kV, 16 mA. The 

entire apparatus is controlled by interfacing to a Motorola 6802 and then 

to a VAX 11/730 computer, and the intensity vs 20 data are digitally 

recorded on the disk of the VAX 11/730. 

Scans were done at a variety of temperatures bracketing both the 

Ist-order and 2nd-order transition temperatures reported in earlier 

studies. Typical profiles collected below (23'C) and above (56°C) T^ are 

shown in Figures B4a and B4b. As can be seen by comparing these figures, 

the new features appearing in the pattern corresponding to the MnP-type 

or distorted structure are (i) small superstructure peaks for hki, k + 

= odd type reflections and (ii) line splittings, such as that at 20 « 

37°. The superstructure peaks are not present in the hexagonal or 

undistorted form, in which = 0.250 and X^^ = 0.250 (as described 

in Pnma) correspond to special positions (in mirror planes) making the 

reflections in question extinct. The line splittings for pairs of 

r e f l e c t i o n s  s u c h  t h a t  h  =  h ' ,  3 k ^  +  =  3 k ( e . g . ,  ( 1 3 1 )  
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Figure B4a. Diffraction profile of MnAs at 23°C using Mo Ka X-rays. 
Intensity in arbitrary units, 23 in degrees 

Figure B4b. Diffraction profile of MnAs at 56°C; all other features as 
in Figure B4a. Arrows indicate superstructure peaks due to 
distortion from hexagonal symmetry 
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= hk&, (115) = h'k'i') are nonexistent in the hexagonal form where CQ = 

/3 bo (again, described in Pnma). 

As the upper limit of the distorted-phase range (~130°C) was 

approached the differences between the distorted and undistorted patterns 

could no longer be clearly seen by mere visual inspection and the results 

of Rietveld analysis became the necessary data in determining whether the 

structural parameters had reverted to/3 bg = CQ and X^g = 

ZMP = 0.250. As will be accounted for in the discussion section, the 

lattice parameter ratio Cg/bo did not prove to be a valid criterion 

for distinguishing the distorted from the undistorted structure due to 

correlations between fit parameters. Emphasis was therefore placed 

mainly on accurately determining the extent of deviation from 0.250 in 

Xas and Z^n» (The other coordinates are either invariant, 

Yas = 0.2500, Y^n = 0.2500 or vary to a much smaller degree than 

XAS or ZMP, as shown by Wilson and Kasper.®) 

One may look ahead to the graphical representation of the main 

result (Figure Bll) to see that the coordinates determined in Rietveld 

refinements on data from Mo X-rays (X Ka^ = 0.7093 A) do not approach the 

limit of 0.250 even at 50°C or more above the reported T2 of -125°. With 

only this result obtained at that point in the study, two decisions 

regarding subsequent experiments were made: (i) to repeat the X-ray 

diffractometer scans using Fe X-rays (X (Ka^) = 1.9360 A) and (ii) to do 

a careful reinvestigation of the region 40°C < T < 130°C using neutron 

diffraction and to look for evidence of magnetic ordering. The switch to 

a new X-ray source of longer wavelength was made on the speculation that 
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the greater angular dispersion in the resulting pattern would provide 

better resolution. If insufficient resolution had been the problem in 

the Mo-radiation case this switch could verify that the structure indeed 

reverted to NiAs-type as expected. Alternatively, if the Mo results were 

meaningful and no structural second-order transition actually occurred at 

~130'C, some magnetic structure would be expected in the phase region 

below that temperature (since some type of continuous change occurred, 

being completed at Tg as evidenced by the X-pt in Cpi?). 

Scans using Fe radiation required longer times (16 sec) than these 

using Mo radiation due to the much weaker incident intensity of the 

former. Only a few points in the dubious temperature region were remea-

sured. The resulting patterns were much smoother with less background 

(see Figure 85) scatter than the Mo radiation patterns. This seems to 

have been the only visible improvement, as the increased angular disper­

sion still did not separate strongly overlapped groups of reflections, 

the splittings simply being too small for the choice of X-ray wavelength 

to matter. 

The neutron diffraction experiments were performed March 23-26, 1984 

at the IPNS facility at Argonne National Laboratory. The results con­

tained no new information and neither the methods nor results will be 

reported here. 

G. Data Analysis 

Rietveld refinements of the MnAs structure from diffraction patterns 

were accomplished using the FORTRAN program DBW3.2 provided by R. A. . 
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gure 85. Diffraction profile of MnAs at 23°C using Fe Ka X-rays 
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Young and D. B. Wiles of Georgia Institute of Technology. The program 

was modified by the author for compatibility with the VAXll computer 

system available at Iowa State University. This mainly entailed conver­

sion of various IBM-system-specific functions and commands to their 

equivalents in the VAX system. 

In general, the refinements required approximately two to four 

minutes per cycle and required from 10 to 15 cycles to converge or to 

reach near-constancy in the structural parameters. In many cases, small 

oscillations about an apparent midpoint would appear in certain fit 

parameters, perhaps due to correlations with other parameters. As these 

oscillations did not occur in the more important atomic coordinates or 

lattice constants, a refinement was often arbitrarily terminated without 

actual convergence so as to avoid needless expense of time and funds. In 

test cases in which refinements were allowed to continue beyond the usual 

termination point, the trends in certain nonstructural variables became 

asymptotic to a constant, as did the goodness-of-fit indicator Rp,w, 

i .e., the f i t  improved extremely slowly with increasing number of cycles. 

Convergence occurred more often in fits to the smoother Fe-radiation 

patterns, so it is speculated that the main cause of nonconvergence was 

noise in the Mo-source profiles, which diminished the ability of the 

model to fit lineshapes and background exactly but did not cause 

fluctuations in the structural part of the model. 

Although analysis of each sequence of temperature-dependent patterns 

seemed to require a slightly new approach, certain systematic methods 

were developed in terms of the order In which various parameters were 
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refined in the model. DBW3.2 allows the user to fix any number of 

parameters in a refinement while varying others. The procedure generally 

used was the following: 

(i) refine only scale factor and lattice constants, ao, bo, CQ. 

(ii) next add background coefficients as variables. 

(iii) include atomic coordinates. 

(iv) include all parameters affecting peak shape. 

(v) lastly refine anisotropic thermal parameters Bij. 

This order of refinement usually succeeded by first finding the 

positions of peak centers and then gradually approximating their shape 

and the 20 dependence of their height and asymmetry. Figure B6 shows a 

comparison of observed and calculated profiles. 

Two systematic difficulties were encountered which required addi­

tional care in the refinements, namely (i) correlations of the 29 zero-

point with the lattice constants ao, bo, and CQ, and (ii) refining 

to a negative (and therefore physically unreasonable) value for the over­

all temperature factor = (BMn.iso + BAs,i5G)/2. Each of these 

difficulties proved to be related to the positioning of the sample holder 

(see Figure B3) in the diffractometer housing. This positioning is 

rather crudely achieved by the use of a spring-loaded clamp to restrict 

lateral movement and by manual adjustment of set screws which control 

height. The latter was done so as to optimize the intensity of some 

known diffraction peak but resulted in a slightly different effective 

zeropoint (usually within ±0.2° 20 of true zero) with each replacement 

of the holder. There also was evidently a nonreproducible amount of tilt 
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in the sample holder relative to the X-ray beam such that as 20 was 

varied there was a contribution to the trend in total diffracted inten­

sity in the pattern, and hence the negative Biso- Both of these 

systematic errors could be corrected by calibration. In the case of the 

zeropoint problem allowing both the lattice parameters and zeropoint to 

vary in a refinement resulted in false minima in parameter space, as 

detected by starting with guesses for the parameters in various places 

and seeing different refined values result, and by noting inconsistencies 

in the trends of individual lattice parameters vs temperature. A room 

temperature Gui nier camera pattern of the sample used for the diffrac-

tometer scans yielded lattice parameters (see Table B2), which could be 

fixed in determining the zeropoint for room-temperature diffractometer 

scan. Once this zeropoint was known, it could be fixed in refinements 

for all patterns which had been scanned before again moving the sample 

holder. In a similar way, the amount of B^so correction necessary 

to account for tilt of the holder was found by fixing BMn,iso and 

"Asjiso to agree with values reported in Wilson and Kaspers single-

crystal study and allowing B-jgo to vary. This correction term, once 

found, could again be applied to all data sets taken with a fixed sample 

holder position. Corrections of both types -point and B^so) were 

subsequently determined for other experimental runs by interpolation of 

lattice parameters or Bgtom.iso from previously determined trends. 

In at least the case of B values, it is therefore the trends with 

temperature, and not necessarily absolute values which have been 

determined in this work. 
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H. Results and Discussion 

Table B4 lists the structural parameters as determined in Rietveld 

refinements. In the case of Mo-radiation scans at temperatures above 

lOO'C, the atomic coordinates (in parentheses) were shown to be indeter­

minable due to the lack of resolution described in the experimental 

section. Lattice parameters for these scans are not believed to be any 

less reliable than those from Fe-radiation scans, as the positions of 

peaks are mostly unambiguous. One type of ambiguity, however, does 

result in the relatively large uncertainties in b^ and especially CQ, 

regardless of the X-ray wavelength employed. This is the near-

coincidence of pairs of lines (h^k^A^), (hgkg&g) such that 3k^2 + = 

SkgZ + AgZ. For such pairs there is little effect on the goodness-of-fit 

if the wrong indices are assigned to both lines. There are resultant 

broad minima in the fit residuals vs bg and Cg and also a strong 

negative correlation between the two axis lengths (-0.96, reduced to 

-0.50 by Fe-radiation). Thus, where a bg value appears to be somewhat 

lower than the trend with temperature predicts (see Figures 87 to B9), 

there is usually a higher than expected result for the corresponding 

CQ- Aside from this difficulty, which is inherent in the compound and 

thus unavoidable, the lattice parameter results are qualitatively useful. 

The slight discrepancies between the findings of Willis and Rooksby and 

those of this author are presumed due to differences in sample purity. 

The odd slope discontinuity at ~80"G in a^ was alluded to as "typical" 

by these previous workers but is not presently recognized as having any 

theoretical basis and is more likely the result of a systematic error in 
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Table B4. Structural parameters of MnAs as determined by Rietveld 

analysis 

T(C) # R 'n X(Mn) Z(Mn) X(As> Z ( A t >  * b c V(cell) 

21 11 Fe 1. 000 0. 250 0 250 0. 917 5. 6989 3. 7195 6 4378 136 4= 
36 4 Mo 1. 000 0. 250 0. 250 0 917 5. 706 3 697 6 403 136 0 
43 4 Mo 0. 995 0. 226 0. 274 0. 919 5. 717 3. 668 6 359 133 z. 
45 2 M a  0. 997 0. 226 0. 273 0. 921 5. 719 3. 666 6 364 133 4 
46 9 Mo 0. 997 0. 227 0. 273 0. 921 5. 717 3. 664 6 368 1 3 3 .  A 
48 1 Mo 0. 996 0 227 0. 273 0. 920 5. 716 • 3. 666 6. 363 133 3 
55 2 Mo 1. 005 0. 229 0. 273 0. 923 5. 731 3 676 6. 378 134 4 
56 9 Mo 1, 001 0. 229 0. 271 0 913 5. 721 3. 668 6. 369 133 6 
65 9 Mo 0 993 0. 229 0. 274 0. 928 5. 726 3. 677 6^ 365 134 0 
71 4 Mo 1 005 0. 228 0. 272 0. 913 5. 726 3. 681 6 351 133 9 
79 S Mo 1. 009 0. 234 0. 267 0. 918 5. 731 3. 668 6. 396 134. 4 
BO 11 F« 0. =93 0. 238 0. 264 0. 919 5. 7389 3. 6872 6. 3778 134 9n 
86 10 Mo 0. 984 0. 223 0. 270 0. 907 5. 733 3. 685 6. 367 134 5 
39 8 Mo 1. 003 0. 234 0 266 0. 916 5. 736 3 672 6. 399 134 8 
92 4 Mo 0. 999 0. 230 0. 272 0. 910 5. 735 3. 689 6 361 134. 6 
94 8 Mo 1. 005 0. 235 0. 267 0 918 5 735 3. 675 6. 395 134 3 
95 8 Mo 0. 998 0. 233 0. 265 0 913 5 730 3. 680 6. 374 134. 4 
98 9 Mo 1. 000 0. 233 0. 265 0. 909 5. 737 3. 677 6. 395 134 9 
99 11 Fe 0. 997 0. 237 0. 262 0. 920 5 7380 3. 6809 6 .  3939 135. 0 = 

100 5 Mo (0. 999 0. 235 0 265 0 911 ) 5 739 3. 685 6 .  381 134 9 
102 6 Mo ( 1. 001 0. 234 0. 263 0 911 ) 5. 744 3. 682 6 .  404 135 4 
103 8 Mo ( 1. 002 0. 234 0. 263 0. 911 ) 5. 751 3. 687 6 .  410 . 135. 9 
105 8 Mo (1. 002 0. 236 0 264 0. 916) 5. 740 3. 678 6 407 135. 3 
107 11 F# 0. 997 0. 240 0 259 0. 922 5, 7392 3. 6814 6. 3917 135. 05 
108 4 Mo ( 1. 004 0. 238 0. 266 0. 924) 5. 743 3 682 6. 393 135 2 
116 8 Mo ( 1. 003 0 242 0. 263 0. 915) 5. 745 3. 678 6. 412 135 5 
117 11 Fe 0. 995 0. 245 0. 255 0. 922 5. 7427 3. 6833 6. 3983 135 34 
119 9 Mo (0. 998 0. 238 0 260 0. 911 ) 5. 747 3 692 6. 387 135 5 
122 9 Mo (0. 999 0 237 0. 259 0. 912) 5. 748 3. 692 6 388 135. 6 
126 4 Mo ( 1. 004 0 238 0. 263 0. 909) 5 751 3, 693 6 383 135 6 
127 11 Fe 0, 998 0 246 0. 253 0. 920 5. 7458 3. 6852 6. 3980 135 47 
133 4 Mo (0. 997 0. 238 0. 262 0. 912) 5 754 3 695 6 380 135 6 
138 5 Mo (0. 999 0 239 0 261 0. 909) 5. 753 3, 687 6. 400 135 8 
Î 39 i 1 ré I. 00Û G. 249 0 252 0. 51/ 5. /496 3. 69 ié 6. 3854 135 
141 5 Mo ( 1. 300 0. 240 0. 260 0, 910) 5. 754 3 690 6 394 135 8 
146 10 Mo (0, 995 0, 239 0. 261 0. 910) 5. 757 3. 695 6. 394 136 0 
149 6 Mo ( 1. 002 0. 241 0. 257 0. 910) 5. 754 3. 688 6. 415 136 1 
150 Mo (0. 997 0. 242 0. 260 0. 911 ) 5. 749 3. 687 6 401 135 7 
152 10 Mo (0. 993 0. 238 0. 260 0. 910) 5. 758 3. 695 6. 395 136. 1 
158 9 Mo (0. 999 0 240 0. 260 0. 912) 5. 758 3. 696 b. 393 136 0 
179 7 Mo (0. 999 0, 238 0 258 0. 909) 5 761 3. 696 6. 396 136. 2 
191 7 Mo < 1. 006 0. 236 0. 259 0. 909) 5. 764 3 694 6. 403 136 3 

Uncertainties 

Mo Fe 

Z ! Mn 0 001 0 001 
X ( A s )  0. 002 0 001 

a  0. 001 0. 0002 
b 0. 002 . 0. 0001 
c 0, 003 0. 0006 
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Figure B7. lattice parameter of MnAs as determined by Rietveld 
refinements and by Willis and Rooksby's powder camera study 
(darkened points) as a function of temperature 
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Figure B9. CQ lattice parameter of MnAs as a function of temperature 
as determined b> Rietveld refinements 
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measurement. As may be clearly seen in Figure BIO, there is a discon-
5 V 

tinuity in the slope of unit-cell volume vs T. The quantity o'=( ^ )p 

is an example of a second derivative of the chemical potential (( |^ )j = 

V) in which such a discontinuity is expected in a 2nd-orcjer phase 

transition, and was determined above and below 125°C by a least squares 

fit to the data.' The results were 2.1 x 10"'+/deg at T < T^ 

and 8.0 x 10"^/deg at T > T^. The latter value does not strongly 

disagree with the value of (5.9 x 10"^) determined by Grazhdankina and 

Burkhanov^i in a study of elasticity constants of MnAs. It can also be 

added that the uncertainties in the Fe-X-ray cell constants of 1 x 10"^ A 

to 6 X lO"** A are in the same range as those of the most precise values 

to be found in the literature. 

Little really needs to be said in conclusions based on the atomic 

coordinate results. A second-order phase transition of structural nature 

occurs at ~125'C as expected (see Figure Bll). From these coordinates, 

the quantity A = -0.250)1 was derived for comparison with the 

model-based prediction by Kato et ah Figure 81? illustrates the general 

correctness of their prediction. Figure B13 shows a final summary of the 

relationships between atomic positions in the distorted and undistorted 

structure. 
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Figure BIO. Plot of orthorhombic unit cell volume of MnAs vs 
temperature, showing discontinuity in slope 
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Figure Bll. Trends in atomic coordinates of MnAs as a function of 
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Fe Ka data; others are from Mo Ka data 
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Figure B12. Definition of disordered parameter A as defined by Kato 
et al.20 and comparison of calculated values (darkened 
points on curve) with experimental values from this study 
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various planes of the orthorhombic unit cell. Coordinates 
labeling points indicate heights above plane of projection 
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The general concluding comments yet to be made are of two types: (i) 

assessment of the Rietveld technique and its appropriateness in applica­

tion to this problem and (ii) reconciliation of the now more complete 

body of data on the MnAs phase transitions. The Rietveld method has 

great power if one uses it with awareness of the aforementioned actual or 

potential limitations; the need for a good starting guess of the struc­

ture and for high quality data, the dependence of resolution on choice of 

X-ray wavelength, and the possible systematic errors in 20 zeropoint and 

thermal parameters. There are also several ways in which the technique 

could be made even more powerful, including development of a more 

accurate shape function to describe X-ray peaks and of a function to more 

meaningfully account for preferred orientation. Work is reportedly 

underway^^ in attempts to derive a statistical test akin to that of 

Hamilton's for determining whether a Rietveld fit with an N-parameter 

model is statistically more meaningful than one using M parameters (M < N 

and the former are a subset of the latter). This can be accomplished if 

it is possible to circumvent or solve the problem presented by the 

unequal weighting of residuals in a Rietveld minimization. 

As for the application of the technique to the MnAs problem, 

Rietveld analysis is evaluated in retrospect as having been perhaps more 

powerful than was necessary, given the discouragingly small amount of new 

information obtained; probably conventional integrated intensity data 

analysis was as accurate a method as could be justified by the result. 

On balance, the Rietveld method was certainly not a bad choice. However, 

a preferable approach might be to attack any similar future problems 
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using Fe (or longer A) X-rays, scanning at fewer and more widely spaced 

temperatures so that both flawed and redundant data are avoided. 

An evaluation of the current state of understanding of the findings 

on MnAs is really beyond the scope of this effort, but it is worthwhile 

to note that the one new finding, namely the actual extent of structural 

distortion in MnAs as a function of temperature, fits nicely into the 

most current explanation, that proposed by Kato. His effort (like most 

other relevant theoretical treatments) focuses on the nature of the first 

order transition at about 40*C but he also accounts for the 2nd order 

transition as well, in a hypothesis that seems plausible to those much 

more familiar with critical phenomena than this author.3^ The signifi­

cance of the current study, as seen in contrast to previous work, is 

perhaps that it has been the first to carefully examine the 2nd order 

transition in a quantitative manner. 



www.manaraa.com

160 

XI. REFERENCES 

1. Landau, L.; Lifshitz, E. "Statistical Physics", Pergamon Press: New 
York, 1959, pp. 430-456. 

2. Franzen, H. F. "Lecture Notes in Chemistry", Springer-Verlag: 
New York, 1982, p. 32. 

3. Franzen, H. F.; Wiegers, 6. A. J. Solid State Chem. 1975, 13, 114. 

4. von Schnering, H. G.; Wiedemeier, H. Z. Krist. 1981, 156, 143. 

5. Wilson, R. H.; Kasper, J. S. Acta Cryst. 1964, 17, 95. 

6. Bates, F. Phil. Mag. 1929, 8, 714. 

7. Serres, A. J. Phys. Radium 1947, 8, 146. 

8. Gui 1 laud, C. J. Phys. Radium 1951, 12, 223. 

9. Bacon, G. E.; Street, R. Nature 1955, 175, 518. 

10. Willis, B. T. M.; Rooksby, H. P. Proc. Phys. Soc. (London) 1954, 
B67, 290. 

11. Kornelson, R. 0. Can. J. Phys. 1961, 39, 1728. 

12. Kittel, C. Phys. Rev. 1960, 120, 335. 

13. Basinski, Z. S.; Kornelson, R. 0.; Pearson, W. B. Trans. Ind. Inst. 
Met. 1960, 120, 335. 

14. Frazer, B. C.; Brown, B. J. Phys. Rev. Lett. 1561, 7(12), 273. 

15. Bean, C. P.; Rodbell, D. S. Phys. Rev. 1962, 126(1), 104. 

16. deBlois, R. W.; Rodbell, D. S. Phys. Rev. 1963, 130(4), 1347. 

17. Grdnvold, F.; Snildal, S.; Westrum, E. F. Acta Chem. Scand. 1970, 
24, 285. 

18. Goodenough, J. B.; Kafalas, J. A. Phys. Rev. 1967, 157, 389. 

19. Schwartz, L. H.; Hall, E. L.; Felcher, G. P. J. App. Phys. 1970, 
41(3), 939. 

20. Kato, I.; Nagai, K.; Aiska, T. J. Phys. Chem. 1983, 16, 3183. 



www.manaraa.com

161 

21. Rietveld, H. M. J. Appi. Cryst. 1969, 2, 65. 

22. Werner, P.-E. "Chemical Communications", University of Stockholm, 
1981, 6, 4. 

23. Wiles, 0. B.; Young, R. A. J. Appl. Cryst. 1981, 14, 149. 

24. Santoro, A.; Prince, E. "Reactor Radiation Division Programs", NBS: 
Washington, DC., 1980. 

25. Powder Diffraction File, JCPDS Int'l Centre for Diffraction Data, 
Swarthmore, PA, 1982. 

26. Nowotny, H.; Funk, R.; Pesl, J. Monatsh. Chem. 1951, 82, 513. 

27. Zieba, A.; Selte, K.; Kjekshus, A.; Andresen, A. F. Acta Chem. 
Seand. 1978, A32, 173. 

28. Gui 1 laud, C.; Wyart, J. Compt. Rend. 1944, 219, 393. 

29. Klug, H. P.; Alexander, L. E. "X-Ray Diffraction Procedures", 2nd 
éd.; J. Wiley: New York, 1974, p. 635. 

30. Stout, G. H.; Jensen, L. H. "X-Ray Structure Determination", 
Macmillan: Toronto, 1970. 

31. MacGillavry, C. H.; Rieck, G. D., eds. "International Tables for 
X-Ray Crystallography", 2nd éd.. Vol. 3; Kynoch Press, Birmingham: 
England, 1968. 

32. Grazhdankina, N. P.; Burkhanov, A. M. Soviet Phys. JETP 1966, 23(6), 
1013. 

33. Young, R. A., private communication. School of Physics, Georgia 
Institute of Technology, March 1984. 

34. Hamilton, W. C. Acta Cryst. 1965, 18(3), 502. 

35. Lindgard, P.-A., private communication. Department of Physics, Iowa 
State University, March 1984. 


	1985
	Enthalpies of formation in the systems tantalum-sulfur and tantalum-aluminum
	Stephen R. Schmidt
	Recommended Citation


	tmp.1415124055.pdf.Zbe7h

